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LỜI CAM ĐOAN

Tôi xác nhận rằng tất cả các kết quả được trình bày trong luận án này là hoàn

toàn mới và đã được công bố trên các tạp chí toán học uy tín quốc tế. Các kết

quả nêu trong luận án là hoàn toàn trung thực, đã được sự đồng ý của các đồng

tác giả trong việc sử dụng, và chưa từng được công bố ở bất kỳ nghiên cứu hay

công trình nào khác.

Nghiên cứu sinh

Trần Đức Ngọc
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cảm ơn các thầy cô và anh chị em trong seminar Giải tích của Khoa Toán Ứng

Dụng, Trường Đại học Sài Gòn và seminar Hình học phức của Khoa Toán-Tin,

Trường Đại học Sư phạm Hà Nội, đặc biệt là PGS.TS. Phạm Đức Thoan, TS.

Nguyễn Thị Nhung và NCS. Đỗ Thị Thúy Hằng về những trao đổi khoa học và

lời khuyên hữu ích cho tôi trong suốt quá trình học tập và nghiên cứu.

Tôi xin gửi lời cảm ơn sâu sắc đến Trường THPT Nguyễn Thượng Hiền, Ban

giám hiệu nhà trường, và các đồng nghiệp trong Bộ môn Toán. Sự quan tâm,

hỗ trợ và chia sẻ của các bạn đã giúp tôi có điều kiện thuận lợi để hoàn thành

quá trình làm nghiên cứu sinh.

Cuối cùng, từ tận đáy lòng, tôi xin bày tỏ lòng biết ơn sâu sắc đến gia đình

và người thân đã luôn ở bên tôi, khích lệ, động viên và chia sẻ mọi khó khăn.

Sự yêu thương và sự ủng hộ của những người thân đã là nguồn động lực lớn lao

để tôi hoàn thành luận án này.

Tác giả

ii



MỤC LỤC

LỜI CAM ĐOAN i

LỜI CẢM ƠN ii

DANH MỤC CÁC QUY ƯỚC VÀ KÍ HIỆU v

MỞ ĐẦU 1

1 TỔNG QUAN 6

2 QUAN HỆ SỐ KHUYẾT KHÔNG LẤY TÍCH PHÂN CHO

ÁNH XẠ PHÂN HÌNH VÀ HỌ SIÊU PHẲNG Ở VỊ TRÍ DƯỚI

TỔNG QUÁT 20

2.1 Một số kiến thức chuẩn bị . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Quan hệ số khuyết không lấy tích phân với họ siêu phẳng ở vị trí

dưới tổng quát . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 QUAN HỆ SỐ KHUYẾT KHÔNG LẤY TÍCH PHÂN CHO

ÁNH XẠ PHÂN HÌNH VÀO ĐA TẠP XẠ ẢNH VÀ HỌ SIÊU

MẶT TÙY Ý 40

3.1 Trọng Chow và trọng Hilbert . . . . . . . . . . . . . . . . . . . . . 40

3.2 Quan hệ số khuyết không lấy tích phân cho các ánh xạ phân hình

từ đa tạp Kähler với họ siêu mặt tùy ý . . . . . . . . . . . . . . . . 43

4 ÁNHXẠ PHÂNHÌNH TRÊNĐA TẠPKÄHLER CÓ CHUNG
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DANH MỤC CÁC QUY ƯỚC VÀ KÍ HIỆU

Trong toàn bộ luận án, chúng tôi thống nhất một số kí hiệu như sau.

� Pn(C): không gian xạ ảnh phức n− chiều.

� ∥z∥ =
(
|z1|2 + · · ·+ |zm|2

)1/2
với z = (z1, . . . , zm) ∈ Cm.

� B(r) := {z ∈ Cm : ∥z∥ < r} là hình cầu mở bán kính r trong Cm.

� S(r) := {z ∈ Cm : ∥z∥ = r} là mặt cầu bán kính r trong Cm.

� d = ∂ + ∂, dc :=

√
−1

4π
(∂ − ∂): các toán tử vi phân.

� σm(z) := dclog∥z∥2 ∧
(
ddclog∥z∥2

)m−1
trên Cm \ {0}.

và vm−1(z) :=
(
ddc∥z∥2

)m−1
: các dạng vi phân.

� O(1): hàm bị chặn đối với r.

� O(r): vô cùng lớn cùng bậc với r khi r → +∞.

� o(r): vô cùng bé bậc cao hơn r khi r → +∞.

� log+r = max{log r, 0}, r ⩾ 0.

� “ || P ”: có nghĩa là mệnh đề P đúng với mọi r ∈ [0,+∞) nằm ngoài một tập

con Borel E của [0,+∞) thoả mãn
∫
E
dr < +∞.

� |S|: lực lượng của tập hợp S.

� I(x): số nguyên lớn nhất không vượt quá x.

� BCNN{d1, . . . , dq}: bội số chung nhỏ nhất của các số nguyên dương d1, . . . , dq.

� Zero(h) : tập các không điểm của hàm h.

� supp(ν) : giá của divisor ν.
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MỞ ĐẦU

1. Lý do chọn đề tài

Lý thuyết phân bố giá trị của các hàm phân hình trên mặt phẳng phức có

nguồn gốc từ các lý thuyết cổ điển được phát triển bởi Sokhotskii-Casorati,

Weierstrass, và Picard vào giữa thế kỷ XIX. Vào cuối thế kỷ XIX và đầu thế kỷ

XX, các lý thuyết này đã được mở rộng thông qua nghiên cứu sự phân bố không

điểm của các hàm nguyên, chủ yếu bởi trường phái Pháp, bao gồm Hadamard,

Borel, Valiron, và những người khác. Vào những năm 1920, nhà toán học Phần

Lan R. Nevanlinna đã xây dựng công cụ giải tích cho ánh xạ phân hình, góp phần

làm cho lý thuyết phân bố giá trị trở nên hoàn chỉnh hơn. Lý thuyết Nevanlinna

liên tục thu hút được sự quan tâm của đông đảo các nhà toán học ở cả hai khía

cạnh: phát triển lý thuyết nội tại và tìm kiếm những mối liên hệ với các lĩnh

vực khác của Toán học.

Đầu tiên, vào năm 1925, R.Nevanlinna công bố bài báo về phân bố giá trị

của hàm phân hình trên mặt phẳng phức và năm sau ông đã mở rộng định lý

Picard nhỏ bằng cách chứng minh hai định lý cơ bản, hiện được biết đến với

tên gọi định lý cơ bản thứ nhất và thứ hai (xem [1]) cho hàm phân hình khác

hằng trên mặt phẳng phức, với mục tiêu là các giá trị phức và bội giao được

ngắt bởi 1. Các nghiên cứu của Nevanlinna ngay lập tức thu hút sự chú ý từ

cộng đồng toán học và dẫn đến nhiều nghiên cứu tiếp theo, như công trình của

A. Bloch [2], H. Cartan ([3], [4]) và H. Weyl [5]. Đặc biệt, H. Cartan đã mở rộng

lý thuyết Nevanlinna cho đường cong chỉnh hình trong không gian xạ ảnh phức,

và L. Ahlfors [6] đã đưa ra cách tiếp cận hình học cho các kết quả này.

Nội dung cốt lõi của Lý thuyết Nevanlinna tập trung ở hai định lý chính,

được gọi là các Định lý cơ bản thứ nhất và Định lý cơ bản thứ hai. Định lý cơ

bản thứ nhất xuất phát từ công thức Jensen và luôn được thiết lập một cách

dễ dàng trong mọi trường hợp. Tuy nhiên, Định lý cơ bản thứ hai không được
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như vậy; việc thiết lập định lý này là rất khó và cho đến nay người ta chỉ mới

thiết lập được trong một số trường hợp nhất định. Mở rộng đáng chú ý đầu tiên

là của H.Cartan vào năm 1933 khi ông tổng quát kết quả của Nevanlinna cho

ánh xạ chỉnh hình không suy biến tuyến tính từ C vào không gian xạ ảnh phức

Pn(C) với mục tiêu là các siêu phẳng ở vị trí tổng quát. Tiếp đó, vào năm 1953,

W.Stoll [7] mở rộng kết quả trên cho ánh xạ chỉnh hình không suy biến tuyến

tính từ Cm vào Pn(C). Các nhà toán học khác như P. Griffiths và B. Shiffman đã

mở rộng lý thuyết cho trường hợp ánh xạ phân hình từ đa tạp parabolic nhiều

chiều vào đa tạp xạ ảnh. Kể từ đó, các kết quả kinh điển của lý thuyết về ánh

xạ phân hình đã được tích hợp một cách tự nhiên vào lý thuyết của Nevanlinna.

Đặc biệt, vào năm 1983, Nochka thiết lập định lý cơ bản thứ hai cho đường cong

chỉnh hình khác hằng trong không gian xạ ảnh với mục tiêu là các siêu phẳng

ở vị trí tổng quát. Kết quả của Nochka đã giúp hoàn thiện trọn vẹn định lý cơ

bản thứ hai của Cartan thiết lập vào năm 1933. Sự phát triển của các định lý

cơ bản thứ hai cũng đồng thời mang lại một công cụ vô cùng hiệu quả cho việc

nghiên cứu các tính chất của ánh xạ phân hình thông qua ảnh ngược của các

siêu phẳng hoặc siêu mặt. Đặc biệt là việc nghiên cứu về tính duy nhất và sự

phụ thuộc đại số của các ánh xạ phân hình có chung ảnh ngược với họ các siêu

phẳng hay siêu mặt được phát triển mạnh mẽ trong khoảng 30 năm trở lại đây.

Trong bối cảnh đó, lý thuyết Nevanlinna đã được mở rộng cho các ánh xạ

phân hình từ đa tạp Kähler vào đa tạp xạ ảnh. Đầu tiên, H. Fujimoto [8] nghiên

cứu sự phân bố giá trị của ánh xạ phân hình từ một đa tạp Kähler M đầy, có

phủ song chỉnh hình với một hình cầu B(R0) trong không gian phức Cm. Do

không có hàm vét cạn parabolic trên đa tạp Kähler tổng quát nên không thể

xây dựng được các định lý cơ bản thứ hai như thông thường. Ông đã đề xuất

các khái niệm và phương pháp mới, đặc biệt là khái niệm số khuyết không lấy

tích phân và quan hệ số khuyết cho ánh xạ phân hình từ đa tạp M vào không

gian xạ ảnh tương ứng với họ các siêu phẳng. Sau đó, T. V. Tấn và V. V. Trường

[9] đã mở rộng kết quả này cho các siêu mặt ở vị trí dưới tổng quát (theo một

nghĩa đặc biệt). Độc lập với hai tác giả trên, M. Ru và S. Sogome [10] đã mở

rộng kết quả của Fujimoto cho các siêu mặt ở vị trí tổng quát. Các nghiên cứu

tiếp theo của Q. Yan [11] và Đ. Đ. Thái - S. Đ. Quang [12] đã thiết lập quan

hệ số khuyết cho ánh xạ phân hình và các siêu mặt ở vị trí dưới tổng quát theo

2



nghĩa thông thường. Đặc biệt, với việc sử dụng phương pháp thay thế siêu mặt

được đề xuất bởi S. D. Quang [31], nhóm các tác giả S. D. Quang, L. N. Quynh,

N. T. Nhung và N. T. Q. Phương [19, 20, 26] đã đưa ra nhiều kết quả tốt hơn về

quan hệ số khuyết không lấy tích phân cho trường hợp họ siêu mặt ở vị trí dưới

tổng quát hoặc họ siêu mặt tùy ý. Tuy nhiên, các kết quả hiện tại vẫn còn xa

so với mong muốn của giới nghiên cứu về một kết quả tối ưu nhất. Do vậy, câu

hỏi đặt ra là: “Có phương pháp nào để thiết lập các quan hệ số khuyết không

lấy tích phân cho các siêu mặt tối ưu hơn không và có thể sử dụng phương pháp

đó để nghiên cứu các vấn đề liên quan về ánh xạ phân hình trên đa tạp Kähler

không như tính duy nhất và phụ thuộc đại số của các ánh xạ không?” . Luận án

này sẽ tập trung nghiên cứu những vấn đề trên.

Vì những lý do trên, chúng tôi chọn đề tài “Lý thuyết Nevanlinna trên

đa tạp Kähler và các ứng dụng ” để nghiên cứu việc thiết lập quan hệ số

khuyết không lấy tích phân cho ánh xạ phân hình và các siêu mặt ở vị trí dưới

tổng quát, đồng thời giải quyết bài toán duy nhất và sự phụ thuộc đại số cho

các ánh xạ phân hình giao với họ siêu phẳng.

2. Mục đích nghiên cứu

Mục đích chính của luận án là thiết lập các quan hệ số khuyết không lấy tích

phân cho các ánh xạ phân hình từ đa tạp Kähler vào đa tạp xạ ảnh và ứng dụng

nghiên cứu các tính chất của họ các ánh xạ phân hình. Mục đích nghiên cứu

bao gồm ba nội dung chính: thứ nhất là thiết lập quan hệ số khuyết không lấy

tích phân cho các ánh xạ phân hình với mục tiêu là họ các siêu phẳng ở vị trí

dưới tổng quát; thứ hai là thiết lập quan hệ số khuyết không lấy tích phân cho

các ánh xạ phân hình với mục tiêu là họ siêu mặt tùy ý trong đa tạp xạ ảnh; và

cuối cùng là nghiên cứu các ánh xạ phân hình trên đa tạp Kähler có chung ảnh

ngược với một số siêu phẳng. Luận án cũng sẽ mở rộng nghiên cứu về bài toán

duy nhất và bài toán suy biến hoặc phụ thuộc đại số của các ánh xạ phân hình

trong các tình huống nêu trên.

3. Đối tượng và phạm vi nghiên cứu

Đối tượng nghiên cứu của luận án là các ánh xạ phân hình từ đa tạp Kähler

vào đa tạp xạ ảnh.

Đề tài được nghiên cứu trong phạm vi của lý thuyết phân bố giá trị cho ánh
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xạ phân hình từ đa tạp Kähler đầy vào đa tạp xạ ảnh.

4. Phương pháp nghiên cứu

Để giải quyết các vấn đề đặt ra trong luận án, chúng tôi sử dụng những

phương pháp của lý thuyết phân bố giá trị, hình học phức và giải tích phức.

Bên cạnh việc sử dụng các kỹ thuật truyền thống, chúng tôi đưa ra những kỹ

thuật mới nhằm đạt được những mục đích đã đặt ra trong đề tài.

5. Ý nghĩa khoa học và thực tiễn

Luận án góp phần làm sâu sắc hơn các kết quả về quan hệ số khuyết không

lấy tích phân cho ánh xạ phân hình từ đa tạp Kähler vào đa tạp xạ ảnh với họ

siêu mặt ở vị trí dưới tổng quát hoặc họ siêu mặt tùy ý. Bên cạnh đó, luận án

làm phong phú thêm các hiểu biết về sự duy nhất hay sự phụ thuộc đại số của

những ánh xạ phân hình từ đa tạp Kähler vào không gian xạ ảnh với điều kiện

về ảnh ngược của họ các siêu phẳng.

Luận án có thể là tài liệu tham khảo cho sinh viên, học viên cao học và

nghiên cứu sinh theo hướng nghiên cứu này.

6. Cấu trúc luận án

Cấu trúc của luận án bao gồm bốn chương chính. Chương Tổng quan dành

để phân tích một số kết quả nghiên cứu của những tác giả trong và ngoài nước

liên quan đến nội dung của đề tài. Ba chương còn lại trình bày các kiến thức

chuẩn bị cũng như những chứng minh chi tiết cho các kết quả mới của đề tài.

Chương I. Tổng quan.

Chương II: Quan hệ số khuyết không tích phân cho ánh xạ phân hình và

họ siêu phẳng ở vị trí dưới tổng quát.

Chương III: Quan hệ số khuyết không tích phân cho ánh xạ phân hình vào

đa tạp xạ ảnh và họ siêu mặt tùy ý.

Chương IV: Ánh xạ phân hình trên đa tạp Kähler có chung ảnh ngược một

số siêu phẳng.

Luận án được viết dựa trên bốn bài báo đã được đăng (xem mục Các công

trình đã công bố liên quan đến luận án). Trong đó, Chương 2 được viết dựa trên

một phần của bài báo [1], Chương 3 được viết dựa trên bài báo [2] và chương

cuối của luận án được viết dựa trên các bài báo [3], [4] và một phần trong bài

báo [1] (xem mục Các công trình đã công bố liên quan đến luận án).
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7. Nơi thực hiện luận án

Trường Đại học Sài Gòn.
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Chương 1

TỔNG QUAN

Đối tượng nghiên cứu của chúng tôi trong luận án này là các ánh xạ phân

hình từ một đa tạp Kähler đầy M có phủ phổ dụng song chỉnh hình với một

hình cầu Bm(R0) trong không gian phức Cm vào đa tạp xạ ảnh. Chúng tôi tập

trung nghiên cứu ba vấn đề chính. Vấn đề thứ nhất đó là quan hệ số khuyết

không lấy tích phân cho ánh xạ phân hình vào không gian xạ ảnh với họ các

siêu phẳng. Cụ thể chúng tôi sẽ mở rộng các kết quả trước đây của Fujimoto

về quan hệ số khuyết không lấy tích phân khi thay vì xét họ siêu phẳng ở vị trí

tổng quát trong không gian xạ ảnh Pn(C) bởi họ siêu phẳng ở vị trí dưới tổng

quát và đưa ra các đánh giá tối ưu hơn cho quan hệ số khuyết. Vấn đề thứ hai

chúng tôi nghiên cứu là quan hệ số khuyết không lấy tích phân của ánh xạ phân

hình từ đa tạp Kähler vào đa tạp xạ ảnh tùy ý giao với họ tùy ý các siêu mặt.

Chúng tôi sẽ đưa ra những cải tiến tổng quát nhất và tốt hơn so với tất cả các

kết quả trước đó về quan hệ số khuyết không lấy tích phân với họ mục tiêu là

các siêu mặt của những tác giả trước. Cuối cùng, chúng tôi sẽ nghiên cứu về vấn

đề duy nhất cho các ánh xạ phân hình từ đa tạp Kahler đầy trùng nhau trên

tập ảnh ngược của các siêu phẳng trong không gian xạ ảnh. Đây là một vấn đề

rất gần gũi với bài toán thiết lập quan hệ số khuyết không tích phân vì cả hai

vấn đề đều được nghiên cứu dựa trên phương pháp đánh giá các dòng sinh bởi

các divisor của các hàm phụ trợ và các dòng sinh bởi các hàm đa điều hòa dưới

đặc trưng cho độ tăng của các ánh xạ phân hình.

Tiếp theo, chúng tôi sẽ tiến hành phân tích chi tiết về lịch sử của mỗi vấn đề

và tính mới trong kết quả nghiên cứu của chúng tôi so với kết quả nghiên cứu

trước đó của các tác giả khác. Để tiện cho việc trình bày, trong toàn bộ phần
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tổng quan này, khi nói đến đa tạp Kähler M , chúng ta luôn giả sử rằng M là

đa tạp đầy và có phủ phổ dụng song chỉnh hình với một hình cầu B(R0) trong

không gian Cm.

Vấn đề 1. Quan hệ số khuyết không lấy tích phân cho ánh xạ

phân hình và họ siêu phẳng ở vị trí dưới tổng quát.

Chúng ta biết rằng mỗi đa thức P bậc n > 0 với hệ số phức thì luôn nhận

mọi giá trị phức đúng n lần (tính cả bội). Như vậy ta có thể nói rằng giá trị

của đa thức P được phân bố đều đặn trên C và không bị khuyết với mọi giá trị

nào. Khi mở rộng sang đối với hàm phân hình f trên mặt phẳng C thì điều này

không còn đúng. Với hầu hết các giá trị phức thì độ tăng của “số lần" nhận giá

trị đó trên các hình tròn {|z| < r} là tương đương nhau. Ta có thể nói rằng phân

bố giá trị của f tương ứng với các giá trị đó là không bị khuyết. Tuy nhiên, có

thể có một số đếm được các giá trị phức mà độ tăng của số lần nhận giá trị này

thấp hơn mức bình thường. Khi đó ta xem rằng phân bố giá trị của f bị khuyết

tại những giá trị này. Để đặc trưng cho tính khuyết này, các nhà toán học định

nghĩa ra khái niệm số khuyết của hàm phân hình f tương ứng với giá trị a, kí

hiệu là δf,∗(a) (hoặc số khuyết δ[k]f,∗(a) với bội chặn bởi k) dựa trên hàm đặc trưng

Nevanlinna T (r, f) và hàm đếm các a-điểm Nf−a(r) (hoặc hàm đến N [k]
f−a(r) được

chặn bội bởi k) được đề xuất bởi R. Nevanlinna vào năm 1926. Khi phân bố giá

trị của f không bị khuyết tại a (điều này xẩy ra với hầu hết các giá trị a) thì

δf,∗(a) = 0. Ngược lại thì δf,∗(a) > 0. Đặc biệt δf,∗(a) = 1 (giá trị lớn nhất có thể)

nếu f không nhận giá trị a. Một tính chất rất đẹp trong lý thuyết Nevanlinna

được chỉ ra là ∑
a∈C

δ
[1]
f,∗(a) ≤ 2.

Bất đẳng thức trên được gọi là quan hệ số cho hàm phân hình và họ các giá trị

phức. Bất đẳng thức này thu được nhờ việc thiết lập định lý cơ bản thứ hai của

Nevanlinna cho các hàm phân hình trên C.
Trong thế kỉ trước, lý thuyết về định lý cơ bản thứ hai và quan hệ số khuyết

của Nevanlinna được nhiều nhà toán học mở rộng lên cho trường hợp các ánh

xạ phân hình từ Cm vào không gian xạ ảnh Pn(C) và các giá trị a được thay bởi

các divisor D (siêu phẳng hoặc siêu mặt). Đặc trưng cho sự thiếu hụt của phân

bố giá trị của f trên D, chúng ta cũng có khái niệm số khuyết δ[k]f,∗(D) được định
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nghĩa thông qua hàm đặc trưng Tf (r) và hàm đếm N [k](r, f∗D) của divsior f∗D.

Khi đó ta cũng thu được các quan hệ số khuyết tương tự như cho trường hợp

hàm phân hình nhờ dựa vào các định lý cơ bản thứ hai cho các ánh xạ phân hình

vào Pn(C). Chúng tôi lưu ý rằng kết quả trung tâm của lý thuyết Nevanlinna là

định lý cơ bản thứ hai cho các ánh xạ phân hình f vào các đa tạp xạ ảnh với họ

các divisor {Di}qi=1. Định lý này cho chúng tôi một bất đẳng thức để đánh giá

hàm đặc trưng Tf (r) với tổng của các hàm đếm N [k](r, f∗Di) của f tương ứng với

các divisor Di, có thể sai khác một đại lượng nhiễu Sf (r) nào đó. Trong trường

hợp ánh xạ từ Cm, thì đại lượng Sf (r) là rất nhỏ so với hàm đặc trưng Tf (r) do

vậy định lý cơ bản thứ hai trở lên có giá trị và ta có thể dựa vào đó để thu được

quan hệ số khuyết. Tuy nhiên, nếu xét bài toán khi ánh xạ phân hình từ một đa

tạp Kähler đầy nói chung, và hình cầu B(R0) với bán kính R0 <∞ nói riêng, thì

điều này không đúng và do vậy Định lý cơ bản thứ hai nếu có thiết lập được thì

cũng không mang lại giá trị. Điều này khiến cho các phương pháp nghiên cứu về

tính chất của ánh xạ phân hình trên đa tạp Kähler thông qua đánh giá qua hàm

đếm và hàm đặc trưng không còn phù hợp. Để thay thế cho định lý cơ bản thứ

hai và số khuyết cổ điển, năm 1983, H. Fujimoto [17] đã giới thiệu khái niệm số

khuyết không lấy tích phân δ
[k]
f (D) (xem định nghĩa trong Chương 2) cho ánh

xạ chỉnh hình từ các mặt Riemann mở vào không gian xạ ảnh Pn(C) mà không

cần thông qua hàm đặc trưng và hàm đếm. Đồng thời ông cũng thu được các

quan hệ số khuyết tương tự như trong trường hợp ánh xạ phân hình trên Cm.

Đến năm 1985, Fujimoto [8] tiếp tục mở rộng các kết quả này cho trường hợp

ánh xạ phân hình từ đa tạp Kähler M nhiều chiều vào Pn(C). Để thuận tiện cho

việc trình bày, chúng tôi nhắc lại định nghĩa sau.

Định nghĩa 1.0.1. Cho {Hi}qi=1 là họ q (q ≥ N+1) siêu phẳng trong Pn(C) (N ≥
n). Ta nói {Hi}qi=1 ở vị trí N-dưới tổng quát trong Pn(C) nếu⋂

0≤j≤N

Hij = ∅, ∀1 ≤ i0 < · · · < iN ≤ q.

Nếu {Hi}qi=1 ở vị trí n-dưới tổng quát thì ta nói {Hi}qi=1 ở vị trí tổng quát.

Tương tự, cho V là một đa tạp xạ ảnh trong Pn(C) với chiều k > 0. Xét q siêu

mặt Q1, . . . , Qq trong Pn(C). Các siêu mặt Q1, . . . , Qq được nói là ở vị trí N-dưới
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tổng quát đối với V (k ≤ N ≤ q − 1) nếu

Qj1 ∩ · · · ∩QjN+1 ∩ V = ∅ với mọi 1 ≤ j1 < · · · < jN+1 ≤ q.

Khi N = k, ta nói rằng Q1, . . . , Qq ở vị trí tổng quát đối với V . Nếu V = Pn(C),

thì ta đơn giản nói rằng Q1, . . . , Qq ở vị trí N-dưới tổng quát.

Năm 1985, H. Fujimoto [8] đã thiết lập một quan hệ số khuyết không lấy

tích phân cho các ánh xạ phân hình và một tập hợp các siêu phẳng ở vị trí tổng

quát thông qua định lý sau.

Định lí A (xem [8, Theorem 1.1]) Giả sử M là một đa tạp Kähler đầy m chiều.

Giả thiết rằng M có phủ phổ dụng song chỉnh hình với một hình cầu trong Cm.

Giả sử f : M → Pn(C) là một ánh xạ phân hình không suy biến tuyến tính (tức

là ảnh của nó không được chứa trong bất kỳ siêu phẳng nào của Pn(C)). Gọi

H1, . . . , Hq là các siêu phẳng của Pn(C) ở vị trí tổng quát. Với một số ρ ≥ 0, nếu

f thỏa mãn điều kiện (Cρ) thì
q∑

i=1

δ
[n]
f (Hi) ≤ n+ 1 + ρn(n+ 1).

Ở đây (Cρ) là một điều kiện liên quan đến độ tăng của thể tích của ảnh của ánh

xạ f (xem định nghĩa trong Chương 2). Bất đẳng thức trong định lý trên được

gọi là quan hệ số khuyết không lấy tích phân cho ánh xạ f với họ mục tiêu là

các siêu phẳng {Hi}qi=1 và bội chặn là n.

Mục đích của chúng tôi trong phần này là mở rộng kết quả của Fujimoto

cho trường hợp tổng quát khi họ các siêu phẳng {Hi}qi=1 ở vị trí dưới tổng quát,

đồng thời cải thiện kết quả của ông và các tác giả trước đó bằng cách làm tối

ưu bất đẳng thức của quan hệ số khuyết không lấy tích phân. Đặc biệt, chúng

tôi cũng xem xét trường hợp tổng số khuyết
∑q

i=1 δ
[n]
f (Hi) được thay thế bằng

số khuyết δ[k]f (D) với D là siêu mặt cho bởi D = H1 + · · · +Hq. Với các ký hiệu

rf , lf ,mf được định nghĩa như trong Mục 2.1 của Chương 2, kết quả đầu tiên

của chúng tôi là định lý sau.

Định lí 2.2.1. Cho {Hi}qi=1 là các siêu phẳng của Pn(C) (q > 2N − n + 1) ở

vị trí N-dưới tổng quát (N ≥ n). Cho M là một đa tạp Kähler đầy m chiều có

phủ phổ dụng song chỉnh hình với một hình cầu B(R0) ⊂ Cm (0 < R0 ≤ +∞).

Cho f là một ánh xạ phân hình không suy biến tuyến tính từ M vào Pn(C) và
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D = H1 + · · · + Hq (như một divisor). Với một số ρ ≥ 0, nếu f thỏa mãn điều

kiện (Cρ) thì ta có

(a) δ
[mf ]
f (D) ≤ 1− (q − 2N + n− 1)(2N − n+ 1)

q(n+ 1)
+ 2ρ

lf
q
,

(b)

q∑
i=1

δ
[rf ]
f (Hi) ≤ 2N − n+ 1 + 2ρ

(2N − n+ 1)lf
n+ 1

.

Trên thực tế, hai mệnh đề của Định lý 2.2.1 xuất phát từ hai cách khác nhau

trong việc đánh giá dòng sinh bởi các hàm đa điều hòa dưới
|Wα(f)|∏q

i=1 |(f̃ , Hi)|ωi
, trong

đó Wα(f) là wronskian tổng quát của f và {ωi}1≤i≤q là các trọng số Nochka cho

họ siêu phẳng {Hi}qi=1 (các khái niệm này được định nghĩa trong Mục 2.1).

Vấn đề 2. Quan hệ số khuyết không lấy tích phân cho ánh xạ

phân hình vào đa tạp xạ ảnh và họ siêu mặt tùy ý.

Trong vài năm gần đây, dựa trên sự phát triển của lý thuyết Nevanlinna,

quan hệ số khuyết không lấy tích phân của các ánh xạ phân hình với mục tiêu

là các siêu mặt đã được nghiên cứu rất sâu rộng. Định lý A đã được nhiều tác

giả mở rộng trong nhiều công trình được xuất bản gần đây, chẳng hạn như [10],

[11], [12], [18], [19], [20]... Đại lượng ở vế phải trong bất đẳng thức của Định lý

A được gọi tổng số khuyết không lấy tích phân với bội chặn n của ánh ánh xạ

phân hình f đối với họ mục tiêu là các siêu phẳng ở vị trí N-dưới tổng quát.

Bây giờ, ta xét trường hợp f :M → Pn(C) là một ánh xạ phân hình không suy

biến đại số, tức là ảnh của f không được chứa trong một siêu mặt nào của Pn(C).

Cho Q = {Q1, . . . , Qq} là một họ các siêu mặt sao cho f(M) ̸⊂ Qi (1 ≤ i ≤ q).

Bằng cách sử dụng phương pháp lọc của P. Corvaja và U. Zannier [21], một số

tác giả đã đạt thu được những mở rộng đáng chú ý của Định lý A.

Đầu tiên, vào năm 2012, M. Ru và S. Sogome [10] đã mở rộng Định lý A cho

trường hợp ánh xạ phân hình giao với một tập hợp các siêu mặt ở vị trí tổng

quát. Các tác giả chứng minh định lý sau.

Định lý B. Cho M là một đa tạp Kähler đầy m chiều có phủ phổ dụng song

chỉnh hình với một hình cầu trong Cm. Giả sử f :M → Pn(C) là ánh xạ phân hình

không suy biến đại số và thỏa mãn điều kiện (Cρ) với ρ ≥ 0. Cho Q1, . . . , Qq (q ≥
n + 1) là các siêu mặt ở vị trí tổng quát trong Pn(C). Khi đó, với mỗi ϵ > 0, ta
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có
q∑

i=1

δ
[L−1]
f (Qi) ≤ n+ 1 + ϵ+

ρL(L− 1)

d
,

trong đó L =
[
2n

2+4nend2n
(
nI
(
ϵ−1
))n]

, d = lcm(degQ1, . . . , degQq).

Ở đây, [x] (tương ứng I(x)) là số nguyên nhỏ nhất không vượt quá (tương ứng

vượt quá) số thực x.

Tiếp đó, vào năm 2013, Q. Yan [11] đã mở rộng Định lý B bằng cách xét

trường hợp các siêu mặt ở vị trí N-dưới tổng quát. Q. Yan đã chứng minh kết

quả sau.

Định lý C. Cho M và f như trong Định lý B. Cho Q1, . . . , Qq (q ≥ n+1) là các

siêu mặt ở vị trí N-dưới tổng quát trong Pn(C). Với mỗi ϵ > 0, ta có

q∑
i=1

δ
[L−1]
f (Qi) ≤ N(n+ 1) + ϵ+

ρL(L− 1)

d
,

trong đó L =
[
(3eNdI(ϵ−1))n(n+ 1)3n

]
.

Sau đó, vào năm 2017, S. D. Quang, N. T. Q. Phuong và N. T. Nhung [19]

đã cải tiến định lý C như sau.

Định lý D. Với các giả thiết của Định lý C, với mỗi ϵ > 0, ta có

q∑
j=1

δ
[L−1]
f (Qj) ≤ (N − n+ 1)(n+ 1) + ϵ+

ρL(L− 1)

d
,

trong đó L =
[
en+2

(
d(N + n− 1)(n+ 1)2I(ϵ−1)

)n]
.

Trong các kết quả của ba định lý B-C-D trên, vế phải của các bất đẳng thức

không phụ thuộc vào số các siêu mặt q. Tuy nhiên, chúng không thể được áp

dụng cho trường hợp ánh xạ suy biến đại số, tức là ánh xạ vào một đa tạp xạ

ảnh của Pn(C).

Để giải quyết trường hợp ánh xạ phân hình suy biến đại số, các tác giả

S.D.Quang - D. P. An trong [22] đã xây dựng khái niệm trọng số Nochka cho

họ các siêu mặt ở vị trí dưới tổng quát đối với một đa tạp xạ ảnh để áp dụng

cho trường hợp này. Cụ thể, với phân hình f từ M vào một đa tạp con k chiều

V ⊂ Pn(C) và họ siêu mặt Q = {Q1, . . . , Qq} (q ≥ k+1) ở vị trí N-dưới tổng quát
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đối với V , Quang và An đã chứng minh được

q∑
j=1

δ
[HV (d)−1]
f (Qj) ≤

(2N − k + 1)HV (d)

k + 1
+
ρ(2N − k + 1)HV (d)(HV (d)− 1)

(k + 1)d
,

trong đó f được giả sử là không suy biến trên Id(V ) (tức là, không có siêu mặt

Q sao cho f(M) ⊂ Q và Q ̸⊃ V ) và HV (d) là hàm Hilbert của V . Kết quả này

cũng là tổng quát các kết quả trước đó cho ánh xạ phân hình và họ siêu mặt ở

vị trí dưới tổng quát trong Pn(C) của Đ. Đ. Thái - S. Đ. Quang [12] và Q. Han

- W. Chen [18]. Trong kết quả này, mức cắt HV (d) nhỏ hơn nhiều so với các kết

quả của ba định lý đã đề cập ở trên. Tuy nhiên, số hạng đầu tiên (2N−k+1)HV (d)
k+1

của vế phải lại lớn hơn nhiều so với thông thường.

Gần đây, bằng cách sử dụng chặn dưới cho trọng số Chow của J. Evertse và

R. Ferretti ([23], [24]); S. D. Quang và cộng sự ([25], [26]) đã xem xét trường

hợp ánh xạ phân hình không suy biến đại số f từ M vào một đa tạp con k chiều

V ⊂ Pn(C) và đạt được kết quả sau:

• (xem S. D. Quang, L. N. Quỳnh và N. T. Nhung [25]) Nếu với Q ở vị trí

N-dưới tổng quát với V thì với ϵ > 0 ta có

q∑
j=1

δ
[L−1]
f (Qj) ≤ (N − k + 1)(k + 1) + ϵ+

ρϵL(L− 1)

d
,

trong đó L =
[
dk

2+k deg(V )k+1ekpk(2k + 4)klkϵ−k + 1
]
và l = (k + 1)(q!).

• (xem S. D. Quang [26]) Nếu Q có hằng số phân bố ∆Q,V với V thì với ϵ > 0

ta có

q∑
j=1

δ
[L−1]
f (Qj) ≤ ∆Q,V (k + 1) + ϵ+

ρϵ(L− 1)

dk+1(2k + 1)(k + 1)(q!) deg(V )
.

Trong đó L =
[
dk

2+k deg(V )k+1ek∆k
Q,V (2k + 4)klkϵ−k + 1

]
, l = (k + 1)(q!) và hằng

số phân bố ∆Q,V của họ Q đối với V được định nghĩa bởi

∆Q,V := max
∅̸=Γ⊂{1,...,q}

♯Γ

dimV − dim
(
V ∩

⋂
j∈ΓQj

) .
Hai kết quả trên có thể được áp dụng cho trường hợp ánh xạ phân hình suy

biến và lượng ∆Q,V (k+1) là khá nhỏ. Tuy nhiên, trong hệ số của ρ có xuất hiện
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nhân tử (q!ϵ−1)k−1 > ((q − 1)!)k−1. Do đó, nếu ρ đủ lớn thì vế phải của bất đẳng

thức luôn vượt quá q và vì thế quan hệ số khuyết này trở nên không có ý nghĩa.

Mục đích của chúng tôi trong phần này là cải thiện các kết quả được đề cập

ở trên để thu được kết quả tổng quát nhất với đánh giá tối ưu nhất tổng các số

khuyết không lấy tích phân. Đặc biệt là chúng tôi sẽ đưa ra chặn trên cho tổng

các số khuyết này không phụ thuộc vào q. Để làm được điều đó, chúng tôi sẽ

áp dụng đánh giá chặn dưới mới cho trọng Chow trong [27] (xem Bổ đề 3.1.5,

Mục 3.1, Chương 3) và đồng thời đưa ra các kỹ thuật mới để kiểm soát hạng tử

nhiễu xảy ra khi định lý về ước lượng cho trọng Hilbert được áp dụng. Kết quả

chính của chúng tôi được phát biểu như sau.

Định lí 3.2.1. Cho M là một đa tạp Kähler đầy có chiều m và ω là dạng Kähler

của M . Giả sử M có phủ phổ dụng song chỉnh hình với một hình cầu trong Cm.

Cho f là ánh xạ phân hình không suy biến đại số từ M vào một đa tạp con V

có chiều k trong Pn(C). Cho Q = {Q1, . . . , Qq} là họ các siêu mặt trong Pn(C)

với hằng số phân bố ∆Q,V đối với V . Gọi d = lcm{degQ1, . . . , degQq} và cho ρ

là một số không âm. Giả sử rằng tồn tại một hàm số h ≥ 0 liên tục và bị chặn

trên M sao cho

ρΩf + ddclogh2 ≥ Ric ω.

Khi đó, với mỗi ϵ > 0, ta có

q∑
j=1

δ
[L−1]
f (Qj) ≤ ∆Q,V (k + 1) + ϵ+

ρ(L− 1)(k + 1)

ud
,

trong đó

u = ⌈∆Q,V (2k+1)(k+1)dk deg(V )(∆Q,V (k+1)ϵ−1+1)⌉ và L = dk deg(V )k
(
k + u

k

)
.

Ở đây, ⌈x⌉ là số nguyên nhỏ nhất không nhỏ hơn số thực x.

Vấn đề 3. Ánh xạ phân hình trên đa tạp Kähler có chung ảnh

ngược một số siêu phẳng.

Vào năm 1926, R. Nevanlinna [1] đã chứng minh rằng nếu hai hàm phân hình

khác hằng trên mặt phẳng phức có cùng ảnh ngược của năm điểm phân biệt

thì chúng sẽ bằng nhau. Đến năm 1975, H. Fujimoto [13] đã mở rộng kết quả

của R. Nevanlinna cho trường hợp ánh xạ phân hình từ Cm vào không gian xạ
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ảnh Pn(C). Ông chỉ ra rằng nếu hai ánh xạ phân hình từ Cm vào Pn(C) có cùng

ảnh ngược của 3n+ 2 siêu phẳng, tính cả bội, thì chúng sẽ trùng nhau. Sau đó,

vào năm 1983, L. Smiley [14] đã chứng minh tính duy nhất của họ ánh xạ phân

hình có cùng ảnh ngược của 3n + 2 siêu phẳng không tính bội bằng cách thêm

điều kiện trùng nhau của các ánh xạ trên tập ảnh ngược của các siêu phẳng và

yêu cầu giao của ảnh ngược của bất kỳ hai siêu phẳng nào trong họ phải có đối

chiều ít nhất là hai. Đến năm 2006, Đ. Đ. Thái và S. Đ. Quang [28] đã đưa ra

các hàm phụ trợ mới để cải tiến kết quả của L. Smiley với số lượng siêu phẳng

giảm xuống còn 3n+ 1 trong trường hợp n ≥ 2. Sau đó, Z. Chen và Q. Yan [15]

đã giảm được số siêu phẳng tham gia giảm xuống còn q = 2n+ 3.

Một vấn đề thú vị đặt ra đó là tổng quát các kết quả về tính duy nhất cho

ánh xạ phân hình từ Cm vào Pn(C) như trên lên cho trường hợp ánh xạ phân

hình từ các đa tạp Kähler vào không gian xạ ảnh. Trong mục này, chúng tôi sẽ

tập trung nghiên cứu vấn đề đó.

1) Định lý duy nhất cho ánh xạ phân hình và họ siêu mặt ở vị trí

dưới tổng quát.

Một trong những kết quả đầu tiên về tính duy nhất của các ánh xạ phân

hình từ đa tạp Kähler vào không gian xạ ảnh có chung ảnh ngược với các siêu

phăng được đưa ra bởi H. Fujimoto. Năm 1986, Ông chứng minh kết quả sau.

Định lý E. Cho M là đa tạp Kähler đầy có phủ phổ dụng song chỉnh hình với

hình cầu B(R0) ⊂ Cm (0 < R0 ≤ ∞. Cho f, g : M → Pn(C) là các ánh xạ phân

hình không suy biến tuyến tính. Nếu f, g thỏa mãn điều kiện (Cρ) với một hằng

số không âm ρ và tồn tại q siêu phẳng H1, . . . , Hq của Pn(C) ở vị trí tổng quát sao

cho f(z) = g(z) trên
⋃q

j=1

(
f−1(Hi) ∪ g−1(Hi)

)
và q > n+ 1+mf +mg + ρ(lf + lg)

thì f ≡ g.

Trong phần đầu tiên của mục này, chúng tôi sẽ tổng quát kết quả trên của

H. Fujimoto. Cụ thể, chúng về sẽ chứng minh một định lý duy nhất cho các ánh

xạ phân hình trên đa tạp Kähler có chung ảnh ngược đối với các siêu phẳng của

Pn(C) ở vị trí dưới tổng quát như sau.

Định lý 4.1.1 Cho M là một đa tạp Kähler đầy có phủ phổ dụng song chỉnh

hình với hình cầu B(R0) ⊂ Cm (0 < R0 ≤ ∞). Cho f, g : M → Pn(C) là các ánh

xạ phân hình không suy biến tuyến tính. Giả sử rằng f và g thỏa mãn điều kiện
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(Cρ) với một hằng số không âm ρ và tồn tại q siêu phẳng H1, . . . , Hq của Pn(C)

ở vị trí N-dưới tổng quát sao cho f(z) = g(z) trên
⋃q

j=1

(
f−1(Hi) ∪ g−1(Hi)

)
.

a) Nếu q > 2N − n+ 1 +mf +mg +
(lf + lg)

n+ 1
(2N − n+ 1)ρ thì f ≡ g.

b) Nếu q > 2N −n+1+
2nq

q + 2n− 2
+
(lf + lg)

n+ 1
(2N −n+1)ρ và giả sử thêm rằng

dim f−1(Hi) ∩ f−1(Hj) ≤ m− 2 (1 ≤ i < j ≤ q)

thì f ≡ g.

Ở đây, ℓf ,mf (tương tự cho ℓg,mg) là các số nguyên dương chỉ phụ thuộc vào

f và được định nghĩa trong Chương 2. Hơn nữa, ta có 0 ≤ mf ≤ lf ≤ n(n+1)
2 .

2) Ánh xạ phân hình không suy biến vi phân chia sẻ yếu một họ

siêu phẳng.

Năm 1981, S. Drouilhet đã chứng minh rằng nếu hai ánh xạ phân hình không

suy biến vi phân f và g từ Cm vào Pn(C) có cùng một ảnh ngược đối với một

siêu mặt bậc ít nhất là n+4 với chỉ các giao điểm bình thường và f = g trên ảnh

ngược của siêu mặt này, thì f ≡ g. Định lý E bên trên của H. Fujimoto cũng kéo

theo kết quả của S. Drouilhet cho trường hợp siêu mặt là tổng của n + 4 siêu

phẳng ở vị trí tổng quát (như là divisor). Vào năm 2022, K. Zhou và L. Jin [30]

đã xem xét trường hợp các ánh xạ phân hình từ Cm vào Pn(C) trong đó điều

kiện hai ánh xạ f, g có cùng ảnh ngược với một số siêu phẳng H được thay thế

bởi điều kiện yếu hơn là f−1(H) ⊂ g−1(H) và f = g trên f−1(H). Chúng tôi gọi

điều kiện này là hai ánh xạ f và g “chia sẻ yếu” siêu phẳng H. Hai tác giả K.

Zhou và L. Jin đã chứng minh kết quả sau.

Định lý F (xem [30, Theorem 1.1]). Cho f, g : Cm → Pn(C) là các ánh xạ phân

hình và cho H1, . . . , Hq là các siêu phẳng của Pn(C) ở vị trí tổng quát sao cho

f(Cm) ⊈ Hj , g(Cm) ⊈ Hj với mọi 1 ≤ j ≤ q và dim f−1(Hi ∩Hj) ≤ m− 2 với mọi

1 ≤ i < j ≤ q. Giả sử rằng:

(a) f−1(Hj) = g−1(Hj) cho 1 ≤ j ≤ p, và f−1(Hj) ⊆ g−1(Hj) cho p < j ≤ q,

(b) f ≡ g trên
⋃q

j=1 f
−1(Hj).

Khi đó f = g nếu một trong các điều kiện sau được thỏa mãn:

(i) f hoặc g là khác hằng và p = 2n+ 2, q > 3n+ 3− 2
√
n.
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(ii) f hoặc g là không suy biến tuyến tính và p = 2n+ 2, q ≥ 2n+ 3.

(iii) f hoặc g là khác hằng và p = 2n+ 1, q ≥ 4n+ 3.

(iv) Cả f và g đều không suy biến tuyến tính và p = n+ 2, q ≥ n3 + n2 + n+ 4.

Gần đây, S. D. Quang [32] đã mở rộng Định lý F cho trường hợp các ánh

xạ phân hình không suy biến tuyến tính từ đa tạp Kähler đầy vào không gian

xạ ảnh chia sẻ yếu một họ các siêu phẳng ở vị trí tổng quát. Mục tiêu đầu tiên

của chúng tôi trong mục này là xem xét vấn đề trên cho trường hợp các ánh xạ

phân hình không suy biến vi phân trên đa tạp Kähler chia sẻ yếu một họ các

siêu phẳng ở vị trí tổng quát. Bằng cách áp dụng kĩ thuật đánh giá dòng sinh

bởi các hàm phụ trợ được đề xuất trong [32] và cải tiến các đánh giá đó, chúng

tôi sẽ đưa ra một ước lượng tối ưu cho số q các siêu phẳng tham gia trong định

lý. Cụ thể, chúng tôi sẽ chứng minh kết quả sau.

Định lý 4.2.1 Cho M là một đa tạp Kähler đầy có phủ phổ dụng song chỉnh

hình với B(R0) ⊂ Cm (0 < R0 ≤ +∞). Giả sử f, g : M → Pn(C) là các ánh xạ

phân hình không suy biến vi phân, thỏa mãn điều kiện (Cρ) với một số ρ ≥ 0.

Cho H1, . . . , Hq là q siêu phẳng của Pn(C) ở vị trí tổng quát và cho số nguyên p

với n+ 2 ≤ p ≤ n+ 3 < q. Giả sử rằng:

(1) f−1(Hi) = g−1(Hi) với mọi 1 ≤ i ≤ p, f−1(Hi) ⊂ g−1(Hi) với mọi p+1 ≤ i ≤ q,

(2) f = g trên
⋃q

i=1 f
−1(Hi).

Khi đó f ≡ g nếu một trong các điều kiện sau được thỏa mãn:

(a) p = n+ 2 và q > 2n+ 5 + 4nρ.

(b) p = n+ 3 và q > n+ 3 + 2nρ.

Kết quả của chúng tôi suy ra kết quả đã đề cập của S. Drouilhet và H.

Fujimoto trong trường hợp mục tiêu là các siêu phẳng. Để chứng minh Định

lý 4.2.1, trước hết chúng tôi chứng minh một bổ đề then chốt có thể xem như

một dạng tổng quát cho định lý duy nhất của các ánh xạ phân hình trên đa tạp

Kähler (xem Bổ đề 4.2.4 trong Chương 4). Sử dụng Bổ đề 4.2.4 cùng với đưa

ra các ước lượng độ tăng của các hàm phụ trợ chúng tô thu được kết luận của

Định lý 4.2.1. Hơn nữa, dựa vào Bổ đề 4.2.4, chúng tôi đồng thời chứng minh
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một định lý phụ thuộc đại số cho các ánh xạ phân hình không suy biến vi phân

trên các đa tạp Kähler có chung ảnh ngược một số siêu phẳng như sau.

Định lý 4.2.5 Cho M như trong Định lý 4.2.1. Giả sử f1, . . . , fk : M → Pn(C)

là k ánh xạ phân hình không suy biến vi phân, thỏa mãn điều kiện (Cρ). Cho ℓ,

p, q là các số nguyên dương với n + 2 ≤ p ≤ q và 2 ≤ ℓ ≤ k và cho H1, . . . , Hq là

q siêu phẳng của Pn(C) ở vị trí tổng quát. Giả sử rằng:

(1) (fu)−1(Hi) = (f1)−1(Hi) với mọi 1 ≤ i ≤ p và 2 ≤ u ≤ k,

(2) f i1 ∧ · · · ∧ f iℓ = 0 trên
⋃

1≤i≤q(f
1)−1(Hi) với mọi 1 ≤ i1 < · · · < iℓ ≤ k.

Khi đó f1∧· · ·∧fk ≡ 0 nếu q > n+1+ 1
k−ℓ+1

(
1 +

p(k−1)
p−n−1

)
+2nρ

(
1 +

(k−1)
(k−ℓ+1)(p−n−1)

)
.

Trong chủ đề này, chúng tôi chỉ tập trung vào vấn đề duy nhất của họ các

ánh xạ phân hình không suy biến vi phân trên đa tạp Kähler chia sẻ yếu các siêu

phẳng. Tuy nhiên, phương pháp của chúng tôi có thể được áp dụng để nghiên

cứu vấn đề tính hữu hạn cho họ ánh xạ phân hình trên. Tuy nhiên, việc tính

toán trong trường hợp đó chắc chắn rất phức tạp, vì có nhiều tham số hơn xuất

hiện. Do vậy, vấn đề này vẫn là một câu hỏi mở thú vị.

3) Các ánh xạ phân hình chung ảnh ngược đối với các họ siêu phẳng

khác nhau.

Năm 2012, G. Dethloff, S. D. Quang và T. V. Tan [33] đã xem xét trường

hợp hai ánh xạ phân hình từ Cm có chung ảnh ngược đối với hai họ siêu phẳng

khác nhau của Pn(C) ở vị trí tổng quát. Để trình bày kết quả của họ, chúng ta

nhắc lại một số khái niệm sau.

Cố định một hệ tọa độ thuần nhất ω = (ω0 : · · · : ωn) trên Pn(C). Trong luận

án này, mỗi siêu phẳng H trong Pn(C) được xác định bởi một dạng tuyến tính

và ta luôn kí hiệu chung là H nếu không có chú ý gì. Tức là

H = {ω ∈ Pn(C)|H(ω) = 0}, với H(ω) = a0ω0 + · · ·+ anωn,

trong đó a0, . . . , an là các hằng số không đồng thời bằng không. Với mỗi ánh xạ

phân hình f từ một đa tạp phức M vào Pn(C) với biểu diễn rút gọn (toàn cục

hoặc địa phương) f̃ = (f0, . . . , fn), ta đặt

H(f̃) =

n∑
i=0

aifi.
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Khi đó hàm H(f̃) phụ thuộc vào việc chọn biểu diễn rút gọn f̃ của f , tuy nhiên

nếu cho L cũng là một siêu phẳng của Pn(C) thì hàm H(f̃)

L(f̃)
không phụ thuộc vào

việc chọn biểu diễn rút gọn này của f , và do vậy được kí hiệu là H(f)
L(f)

.

Năm 2012, G. Dethloff, S. D. Quang và T. V. Tan đã chứng minh một định

lý về tính duy nhất của họ ánh xạ phân hình có chung ảnh ngược với các họ

siêu phẳng khác nhau. Kết quả của ba tác giả cho trường hợp các ánh xạ phân

hình không suy biến tuyến tính được phát biểu đơn giản như sau.

Định lí G (see [33, Theorem 1.2]). Cho f và g là hai ánh xạ phân hình không

suy biến tuyến tính từ Cm vào Pn(C). Cho {Hj}qj=1 và {Lj}qj=1 (q > 2n + 2) là

hai họ các dạng tuyến tính ở vị trí tổng quát trong C[x0, . . . , xn]. Giả sử rằng

a) f−1 (Hj) = g−1 (Lj) với mọi 1 ≤ j ≤ q,

b) dim(f−1(Hi) ∩ f−1(Hj)) ≤ m− 2 với mọi 1 ≤ i < j ≤ q,

c) Hi(f)
Li(g)

=
Hj(f)
Lj(g)

trên
⋃q

k=1 f
−1(Hk) \ (f−1(Hi)∪ f−1(Hj)) với mọi 1 ≤ i < j ≤ q.

Nếu q ≥ 2n+ 3 thì
H1(f)

L1(g)
≡ · · · ≡

Hq(f)

Lq(g)

và tồn tại một phép biến đổi xạ ảnh L từ Pn(C) vào chính nó sao cho L(f) ≡ g

và L(Hj) = Lj với mọi j ∈ {1, . . . , q}.
Mục tiêu của chúng tôi trong phần này là cải tiến và mở rộng kết quả trên

đối với trường hợp các ánh xạ phân hình không suy biến tuyến tính từ một đa

tạp Kähler đầy vào không gian xạ ảnh. Hơn nữa, trong kết quả của chúng tôi,

các điểm của ảnh ngược với bội vượt quá một số nhất định sẽ được bỏ qua. Kết

quả chính của chúng tôi được phát biểu như sau.

Định lý 4.3.1 Cho M là một đa tạp Kähler đầy có phủ phổ dụng song chỉnh

hình với hình cầu B(R0) ⊂ Cm (0 < R0 ≤ ∞). Cho f, g : M → Pn(C) là các ánh

xạ phân hình không suy biến tuyến tính thoả mãn điều kiện (Cρ) với một hằng

số không âm ρ. Cho {Hj}qj=1 và {Lj}qj=1 (q ≥ 2n+ 2) là hai họ các siêu phẳng ở

vị trí tổng quát và cho l1, . . . , lq là các số nguyên dương (có thể là +∞). Giả sử

rằng q > n+ 1 + ρn(n+ 1) + 2nq
q+2n−2 +

∑q
j=1

n
lj+1 và

a) min{1, νHj(f),≤lj} = min{1, νLj(g),≤lj} với mọi 1 ≤ j ≤ q,

b) dim sup νHi(f),≤li ∩ sup νHj(f),≤lj ≤ m− 2 với mọi 1 ≤ i < j ≤ q,
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c) Hi(f)
Hj(f)

=
Li(g)
Lj(g)

trên
⋃q

s=1 sup νHs(f),≤ls \ (sup νHj(f)∪ sup νLj(f)) với mọi 1 ≤ i <

j ≤ q.

Khi đó tồn tại một phép biến đổi xạ ảnh L từ Pn(C) vào chính nó sao cho

L(g) ≡ f và siêu phẳng xác định bởi Hj là ảnh của siêu phẳng xác định bởi Lj

qua ánh xạ L với mọi j ∈ {1, . . . , q}.
Trong Định lý 4.3.1, nếu chúng ta giả sử thêm rằng có n + 1 siêu phẳng

Hij (1 ≤ j ≤ n + 1) sao cho Hij ≡ Lij , thì phép biến đổi xạ ảnh L phải là phép

biến đổi đồng nhất, và do đó f ≡ g, Hj ≡ Lj với mọi j = 1, . . . , q. Từ đó ta thu

được Hệ quả 4.3.2 (xem Chương 4) cho ta kết luận f = g nếu có ít nhất n + 1

siêu phẳng Hj ≡ Lj. Hệ quả này cũng tổng quát hóa và cải tiến tất cả các kết

quả trước đó về tính duy nhất của các ánh xạ phân hình chia sẻ 2n + 3 siêu

phẳng của Pn(C) ở vị trí tổng quát.

19



Chương 2

QUAN HỆ SỐ KHUYẾT KHÔNG LẤY

TÍCH PHÂN CHO ÁNH XẠ PHÂN

HÌNH VÀ HỌ SIÊU PHẲNG Ở VỊ TRÍ

DƯỚI TỔNG QUÁT

Cho M là một đa tạp Kähler đầy có phủ phổ dụng song chỉnh hình với một

hình cầu Bm(R0) trong Cm (0 < R0 ≤ +∞). Trong chương này, chúng tôi sẽ thiết

lập một quan hệ số khuyết không lấy tích phân cho các ánh xạ phân hình không

suy biến tuyến tính giao với một họ các siêu phẳng ở vị trí dưới tổng quát. Bên

cạnh đó, chúng tôi cũng thiết lập một quan hệ số khuyết cho các ánh xạ với họ

mục tiêu là một siêu mặt duy nhất có dạng tổng của các siêu phẳng.

Do vậy, Chương 2 bao gồm hai mục. Mục đầu tiên cung cấp những kiến thức

cơ bản về lý thuyết Nevanlinna cho các ánh xạ phân hình trên các hình cầu

trong Cm và các bổ đề cần thiết để hỗ trợ để chứng minh định lý chính của

chương (Định lý 2.2.1). Mục thứ hai trình bày chi tiết các chứng minh của Định

lý 2.2.1. Đây là một định lý về số khuyết không lấy tích phân đối với các ánh

xạ phân hình vào không gian xạ ảnh và đa tạp xạ ảnh. Chương 2 được viết dựa

trên phần lớn của bài báo [1] trong mục các công trình đã công bố liên quan

đến luận án.

2.1 Một số kiến thức chuẩn bị

Trong mục này, chúng tôi bắt đầu bằng việc trình bày các khái niệm và kết

quả quan trọng của lý thuyết Nevanlinna trên hình cầu, bao gồm các hàm cơ
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bản, số khuyết cổ điển của Nevanlinna và khái niệm Wronskian của ánh xạ phân

hình. Tiếp theo, chúng tôi trình bày khái niệm số khuyết không lấy tích phân

cùng một số tính chất.

a) Lý thuyết Nevalinna cho ánh xạ phân hình từ hình cầu trong
Cm vào không gian xạ ảnh

Cho F là hàm chỉnh hình trên miền Ω trong Cm. Với mỗi bộ α = (α1, . . . , αm)

gồm các số nguyên không âm, ta định nghĩa |α| = α1 + . . .+ αm và

DαF =
∂|α|F

∂α1z1 . . . ∂αmzm
.

Ta xét ánh xạ νF : Ω → Z được xác định bởi

νF (z) := max
{
l : DαF (z) = 0 với mọi α thỏa mãn |α| < l

}
, với z ∈ Ω.

Khi đó νF được gọi là divisor (divisor không điểm) của hàm chỉnh hình F . Tổng

quát, ta có khái niệm sau.

Định nghĩa 2.1.1. Một divisor ν trên miền Ω trong Cm là một ánh xạ ν : Ω → Z
sao cho, với mỗi điểm a ∈ Ω, tồn tại các hàm chỉnh hình khác không F và G

trên một lân cận liên thông U ⊂ Ω của a sao cho ν(z) = νF (z) − νG(z) với mỗi

z ∈ U ngoài một tập con giải tích có chiều ≤ m− 2.

Hai divisor được gọi là tương đương nếu chúng bằng nhau ngoài một tập

con giải tích có chiều ≤ m − 2. Đối với mỗi divisor ν trên Ω, ta định nghĩa

Supp ν := {z : ν(z) ̸= 0}. Khi đó Supp ν là tập con giải tích của Ω có chiều thuần

túy (m− 1) hoặc là một tập rỗng.

Cho φ là một hàm phân hình khác không trên miền Ω trong Cm. Với mỗi

a ∈ Ω, ta chọn các hàm chỉnh hình khác không F và G trên một lân cận U ⊂ Ω

sao cho φ =
F

G
trên U và

dim(F−1(0) ∩G−1(0)) ≤ m− 2.

Ta định nghĩa các divisor không điểm ν0φ, divisor cực điểm ν∞φ và divisor νφ sinh

bởi φ lần lượt bởi

ν0φ := νF , ν∞φ := νG và νφ = ν0φ − ν∞φ .
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Các định nghĩa này không phụ thuộc vào cách chọn các hàm F và G, và do đó

các divisor này được định nghĩa trên toàn bộ miền Ω.

Với z = (z1, . . . , zm) ∈ Cm, ta đặt ∥z∥ =
(
|z1|2 + · · ·+ |zm|2

)1/2
. Ta định nghĩa:

Bm(R) := {z ∈ Cm : ∥z∥ < R},

S(R) := {z ∈ Cm : ∥z∥ = R} (0 < R <∞),

và các dạng vi phân

vm−1(z) :=
(
ddc∥z∥2

)m−1
, σm(z) := dclog∥z∥2 ∧

(
ddclog∥z∥2

)m−1
trên Cm \ {0}.

Định nghĩa 2.1.2 (Hàm đếm). Cho ν là divisor trên hình cầu Bm(R0) (0 <

R0 ≤ ∞). Hàm đếm của ν trên Bm(R0) được định nghĩa như sau:

N(r, r0, ν) =

r∫
r0

n(t, ν)

t2m−1
dt (0 < r0 < r < R).

với

n(t, ν) =


∫

|ν| ∩B(t)
ν(z)vm−1 nếu m ≥ 2,∑

|z|≤t

ν(z) nếu m = 1.

Cho p là một số nguyên dương hoặc p = +∞. Ta đặt ν[p] = min{p, ν} và định

nghĩa

N [p](r, r0, ν) := N(r, r0, ν
[p]).

Với mỗi hàm phân hình khác không φ trên Bm(R0), ta đặt:

Nφ(r, r0) = N(r, r0, ν
0
φ), N

[p]
φ (r, r0) = N(r, r0, (ν

0
φ)

[p]).

Để đơn giản, ta sẽ bỏ đi ký hiệu [p] nếu p = ∞. Theo công thức Jensen, với

0 < r0 < r < R0, ta có

Nφ(r, r0)−N1/φ(r, r0) =

∫
S(r)

log|φ|σn −
∫

S(r0)

log|φ|σn

Cho f : Bm(R0) −→ Pn(C) là một ánh xạ phân hình với biểu diễn rút gọn

f̃ = (f0, . . . , fn), trong đó mỗi fi là hàm chỉnh hình trên Bm(R0) và f(z) =
(
f0(z) :

· · · : fn(z)
)
ngoài tập con giải tích {f0 = · · · = fn = 0} có đối chiều ≥ 2. Đặt
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∥f̃∥ =
(
|f0|2 + · · ·+ |fn|2

)1/2
. Khi đó, kéo lùi bởi f của dạng Fubini-Study Ω trên

Pn(C) được xác định bởi

Ωf = ddclog∥f̃∥2.

Định nghĩa 2.1.3 (Hàm đặc trưng). Hàm đặc trưng của f được định nghĩa như

sau.

Tf (r) =

∫ r

r0

dt

t2m−1

∫
B(t)

f∗Ω ∧ vm−1, (0 < r0 < r < R0).

Theo công thức Jensen, ta có

Tf (r, r0) =

∫
S(r)

log∥f̃∥σm −
∫

S(r0)

log∥f̃∥σm +O(1), (khi r → R0).

Để đơn giản, trong suốt luận án này chúng tôi luôn chọn r0 là một số cố

định sao cho 0 < r0 < R0 và ta sẽ viết Nφ(r), N
[p]
φ (r), Tf (r) thay cho Nφ(r, r0),

N
[p]
φ (r, r0), Tf (r, r0).

Cho Q là một siêu mặt trong Pn(C) có bậc d. Gọi P là một đa thức thuần

nhất bậc trong C[x0, . . . , xn] xác định Q. Khi đó, P có dạng

P (x0, . . . , xn) =
∑
I∈Td

aIx
I , aI ∈ C,

trong đó Td = {(i0, . . . , in) ∈ Zn+1
≥0 ; i0 + · · · + in = d}, xI = xi00 · · · xinn với mỗi

I = (i0, . . . , in) ∈ Td và aI là các hằng số không đồng thời bằng không, và thỏa

mãn

Q = {(x0 : · · · : xn) ∈ Pn(C);P (x0, . . . , xn) = 0}.

Ta đặt P (f̃) = P (f0, . . . , fn). Trong trường hợp d = 1, ta gọi Q là siêu phẳng

trong Pn(C) và có thể chọn P là một dạng tuyến tính khác không.

Định nghĩa 2.1.4 (Hàm xấp xỉ). Hàm xấp xỉ của f tương ứng đối với Q, ký

hiệu là mf (r, r0, Q), được định nghĩa bởi

mf (r, r0, Q) =

∫
S(r)

log
∥f̃∥d

|P (f̃)|
σm −

∫
S(r0)

log
∥f̃∥d

|P (f̃)|
σm.

Định nghĩa trên không phụ thuộc vào việc chọn biểu diễn rút gọn f̃ của f

cũng như việc chọn đa thức xác định P .
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Mặt khác, chú ý rằng hàm P (f̃) phụ thuộc vào việc chọn biểu diễn rút gọn

của f và đa thức xác định P . Tuy nhiên, divisor không điểm của hàm P (f̃) không

phụ thuộc vào những lựa chọn này. Ta có thể thấy rằng ν0
P (f̃)

(z) chính là bội

giao của ảnh của f với siêu phẳng Q tại điểm f(z). Do vậy, ta kí hiệu divisor

này là νQ(f). Với mỗi số nguyên dương µ0 (hoặc +∞), hàm đếm các giao điểm

của siêu mặt Q và ảnh của f chặn bội bởi µ0 được cho bởi

N
[µ0]
Q(f)

(r, r0) = N
[µ0]

P (f̃)
(r, r0), (0 < r0 < r < R0).

Cũng theo công thức Jensen, ta có

NQ(f)(r, r0) =

∫
S(r)

log|Q(f̃)|σm −
∫
S(r0)

log|Q(f̃)|σm.

Để đơn giản, ta cũng viết mf (r,Q), N
[µ0]
Q(f)

(r) thay cho mf (r, r0, Q), N
[µ0]
Q(f)

(r, r0).

Kho đó, định lý cơ bản thứ nhất trong lý thuyết Nevanlinna trên hình cầu được

phát biểu như sau:

dTf (r) = mf (r,Q) +NQ(f)(r) +O(1), (r0 < r < R),

trong đó O(1) là đại lượng bị chặn và không phụ thuộc vào f .

b) Tính suy biến của ánh xạ phân hình từ đa tap phức vào đa
tạp xạ ảnh

Cho M là một đa tạp phức m chiều. Cho f là ánh xạ phân hình từ M vào Pn(C).

Định nghĩa 2.1.5 (Không suy biến tuyến tính). Ánh xạ phân hình f được gọi

là không suy biến tuyến tính nếu ảnh của f không nằm trong bất kỳ siêu phẳng

nào của Pn(C).

Với một điểm p ∈ M , giả sử f có một biểu diễn địa phương trên một lân

cận xung quang điểm p là f̃ = (f0, . . . , fn). Ta gọi Mp là trường của tất cả các

mầm của các hàm phân hình tại p. Với mỗi k ≥ 0, ký hiệu Fk
p là Mp-module

con của Mk+1
p được sinh bởi tất cả các phần tử

(
∂|α|f0
∂zα

, . . . ,
∂|α|fn
∂zα

)
với |α| ≤ k,

trong đó z = (z1, . . . , zm) là một hệ tọa độ chỉnh hình địa phương quanh p và

|α| = α1 + · · ·+ αm với α = (α0, . . . , αm). Khi đó, ta thấy rằng

F0
p ⊂ F (1)

p ⊂ · · · ⊂ F (k)
p ⊂ · · · .
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Chúng tôi định nghĩa:

rank f (k) := rankMp
F (k)
p − rankMp

F (k−1)
p (k ≥ 1), rank f (0) = 1,

rf := max{k ≥ 0 ; rank f (k) > 0},

lf :=
∑
k≥1

krank f (k),

mf :=
∑
k,l

(k − l)+min

n−1Hl,

(
rf (k)−

l−1∑
λ=0

n−1Hλ

)+
 ,

trong đó x+ = max{0, x} với mỗi số thực x, và n−1Hλ là tổ hợp chập λ của n− 1

phần tử. Theo H. Fujimoto [16], các định nghĩa rank f (k), lf , rf ,mf không phụ

thuộc vào việc chọn điểm p, chọn biểu diễn rút gọn địa phương f̃ và chọn tọa

độ chỉnh hình z. Chúng tôi cũng có các khẳng định sau:

� rf ≤ n, 0 ≤ mf ≤ lf ≤ n(n+ 1)

2
.

� f là không suy biến tuyến tính nếu và chỉ nếu rankMp
F (rf )
p = n+ 1.

Do đó, nếu f là không suy biến tuyến tính thì tồn tại một “tập các đa chỉ số

chấp nhận được”

α = (α0, . . . , αn), trong đó αi = (αi1, . . . , αim) ∈ Nm,

sao cho:

(i) |αi| ≤ k với mọi 0 ≤ i ≤ rankMp
F (k)
p − 1 và{(

∂|αi|f0
∂zαi

, . . . ,
∂|αi|fn
∂zαi

)
; 0 ≤ i ≤ rankMp

F (k)
p − 1

}
lập thành một cơ sở của F (k)

p trên Mp.

(ii) Wα(f̃) := det

(
∂|αi|f

∂zαi

)
0≤i,j≤n

̸≡ 0.

(iii) Wα(hf̃) = hn+1Wα0,...,αn(f0, . . . , fn) với bất kỳ hàm phân hình h không bằng

không.

Hàm Wα(f̃) được gọi là Wronskian tổng quát của ánh xạ f̃ = (f0, . . . , fn) (hoặc

Wronskian tổng quát địa phương của f). Chúng tôi lưu ý rằng
∑n

i=0 |αi| = lf .

Cuối cùng ta có định nghĩa về ánh xạ không suy biến đại số như sau.
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Định nghĩa 2.1.6 (Không suy biến tuyến tính). Cho f là ánh xạ phân hình từ

đa tạp phức M vào một đa tạp xạ ảnh con V của Pn(C). Ánh xạ f được nói là

không suy biến đại số nếu ảnh của nó không được chứa trong một tập con đại

số thực sự của V .

c) Số khuyết không lấy tích phân cho ánh xạ phân hình

Cho f : Bm(R0) → Pn(C) là một ánh xạ phân hình, và Q là một siêu mặt

trong Pn(C) với bậc d sao cho ảnh của f không được chứa trong Q. Từ định lý

cơ bản thứ nhất, ta có bất đẳng thức

∥ NQ(f)(r) ≤ dTf (r) +O(1) (0 < r0 < r < R),

trong đó O(1) là một đại lượng bị chặn không phụ thuộc vào f .

Định nghĩa 2.1.7. Số khuyết cổ điển Nevanlinna của ánh xạ f đối với siêu mặt

Q với bội được chặn bởi µ0 được định nghĩa như sau:

δ
[µ0]
f,∗ (Q) = 1− lim supr→R0

N
[µ0]
Q(f)

(r)

dTf (r)
.

Tương ứng với ký hiệu của hàm đếm, trong trường hợp µ0 = +∞, ta sẽ viết

δf,∗(Q) thay cho δ[+∞]
f,∗ (Q). Dựa trên định nghĩa số khuyết và bất đẳng thức trên,

ta có các bất đẳng thức sau:

0 ≤ δf,∗(Q) ≤ δ
[µ0+1]
f,∗ (Q) ≤ δ

[µ0]
f,∗ (Q) ≤ 1.

Tiếp theo ta xét M là một đa tạp Kähler đầy có chiều m với dạng Kähler ω.

Giả sử f : M → Pn(C) là ánh xạ phân hình. Ta kí hiệu Ωf là kéo lùi của dạng

Fubini-Study Ω trên Pn(C) bởi ánh xạ f . Trên M , với biểu diễn địa phương của

dạng Kähler cho bởi ω =
√
−1
2

∑
i,j hij̄ dzi ∧ dzj, ta định nghĩa dạng Ricci của ω

bởi

Ricω = ddclog
(
det
(
hij
))
.

với d = ∂ + ∂ và dc =
√
−1
4π (∂ − ∂).

Định nghĩa 2.1.8. Với mỗi số thực không âm ρ ≥ 0, ta nói rằng ánh xạ f thỏa

mãn điều kiện (Cρ) nếu tồn tại một hàm giá trị thực h khác không, liên tục và

bị chặn trên M sao cho

ρΩf + ddclogh2 ≥ Ricω.
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Định nghĩa 2.1.9. Cho một số nguyên dương µ0 và một siêu mặt Q bậc d trong

Pn(C) sao cho f(M) ̸⊂ Q. Ký hiệu νQ(f)(p) là bội giao của ảnh của f và Q tại

f(p). Số khuyết không lấy tích phân của f đối với siêu mặt Q, với bội được chặn

đến bậc µ0, ký hiệu là δ[µ0]
f (Q), được định nghĩa như sau:

δ
[µ0]
f (Q) := 1− inf{η ≥ 0 | η thỏa mãn điều kiện (∗)}.

Ở đây, điều kiện (*) có nghĩa là tồn tại hàm không âm h liên tục, bị chặn trên

M , và có bội không nhỏ hơn min{νQ(f), µ0}, sao cho

dηΩf +

√
−1

2π
∂∂̄logh2 ≥ [min{νQ(f), µ0}],

với [ν] là ký hiệu của dòng kiểu (1, 1) sinh bởi divisor ν.

Tương tự như số khuyết cổ điển của Nevanlinna, số khuyết không lấy tích

phân có các tính chất sau:

� 0 ≤ δ
[µ0]
f (Q) ≤ 1.

� Nếu f(M) ∩Q = ∅ thì δ[µ0]
f (Q) = 1.

� Nếu tồn tại một số nguyên dương µ0 sao cho νf (Q)(p) ≥ µ với mọi p ∈ f−1(Q)

và µ ≥ µ0, thì δ
[µ0]
f (Q) ≥ 1− µ0

µ .

Khi M = B(R0), mối quan hệ giữa số khuyết cổ điển của Nevanlinna và số

khuyết không lấy tích phân được cho qua mệnh đề sau.

Mệnh đề 2.1.10. Nếu limr→R0
Tf (r, r0) = ∞, thì ta có

0 ≤ δ
[µ0]
f (Q) ≤ δ

[µ0]
f,∗ (Q) ≤ 1.

2.2 Quan hệ số khuyết không lấy tích phân với họ

siêu phẳng ở vị trí dưới tổng quát

Trong mục này, chúng tôi sẽ chứng minh một quan hệ số khuyết cho ánh xạ

phân hình từ đa tạp Kähler đầy vào không gian xạ ảnh với họ mục tiêu là các

siêu phẳng ở vị trí dưới tổng quát. Cụ thể, chúng tôi sẽ chứng minh định lý sau.
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Định lý 2.2.1. Cho {Hi}qi=1 là các siêu phẳng của Pn(C) (q > 2N − n + 1) ở

vị trí N-dưới tổng quát (N ≥ n). Cho M là một đa tạp Kähler đầy m chiều có

phủ phổ dụng song chỉnh hình với một hình cầu B(R0) ⊂ Cm (0 < R0 ≤ +∞).

Cho f là một ánh xạ phân hình không suy biến tuyến tính từ M vào Pn(C) và

D = H1 + · · · + Hq (như một divisor). Với một số ρ ≥ 0, nếu f thỏa mãn điều

kiện (Cρ) thì ta có

(a) δ
[mf ]
f (D) ≤ 1− (q − 2N + n− 1)(2N − n+ 1)

q(n+ 1)
+ 2ρ

lf
q
,

(b)

q∑
i=1

δ
[rf ]
f (Hi) ≤ 2N − n+ 1 + 2ρ

(2N − n+ 1)lf
n+ 1

.

Nhận xét:

(1) Bằng tính toán đơn giản, ta có

1

N

q∑
i=1

ν
[rf ]
f (Hi) ≤ ν

[mf ]
f (D) ≤

q∑
i=1

ν
[mf ]
f (Hi),

và các bất đẳng thức này trở thành đẳng thức trong những trường hợp rất

nghiêm ngặt (ví dụ: mọi giao điểm f−1(Hi)∩ f−1(Hj) đều có đối chiều ít nhất là

hai). Điều này dẫn đến

1

Nq

q∑
i=1

(1− δ
[rf ]
f (Hi)) ≤ 1− δ

[mf ]
f (D) ≤ 1

q

q∑
i=1

(1− δ
[mf ]
f (Hi)),

tức là,

1

N

q∑
i=1

δ
[mf ]
f (Hi) +

q(N − 1)

N
≥ qδ

[mf ]
f (D) ≥

q∑
i=1

δ
[rf ]
f (Hi).

Do đó, mệnh đề (a) không suy ra mệnh đề (b) và ngược lại.

(2) Nếu f không suy biến vi phân, tức là ma trận Jacobi của f có hạng n tại

một điểm nào đó, thì rf = 1 và lf = n,mf = 1. Do đó, ta có hệ quả sau.

Hệ quả 2.2.2. Với giả thiết của Định lý 2.2.1 và giả thiết thêm rằng f không

suy biến vi phân, ta có:

(a) δ
[1]
f (D) =

2(N − n)

2N − n+ 1
+
n+ 1

q
+

2lf
q
ρ,

(b)

q∑
i=1

δ
[1]
f (Hi) ≤ 2N + n− 1 +

2n(2N − n+ 1)

n+ 1
ρ.
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Chúng tôi lưu ý rằng, với giả thiết của Hệ quả 2.2.2, trong [12] S. D. Quang

và D. D. Thái đã chỉ ra rằng

q∑
i=1

δ
[1]
f (Hi) ≤ 2N + n− 1 + 2ρ(2N − n+ 1).

Do đó, Hệ quả 2.2.2(b) là một sự cải tiến của kết quả trong [12].

Để chứng minh Định lý 2.2.1, chúng tôi cần một số kết quả bổ trợ sau.

Đầu tiên, chúng tôi có mệnh đề về tích phân của hàm phụ trợ được cho bởi H.

Fujimoto [17] (sau này được chứng minh lại bởi M. Ru và S. Sogome [10]).

Mệnh đề 2.2.3 (xem [17, Proposition 6.1] và [10, Proposition 3.3]). Cho f là

ánh xạ phân hình không suy biến tuyến tính từ hình cầu Bm(R0) ⊂ Cm vào Pn(C)

với biểu diễn rút gọn f̃ = (f0, . . . , fn) và giả sử α = (α0, . . . , αn) là họ đa chỉ số

chấp nhận được của f . Gọi H0, . . . , Hn là n+1 siêu phẳng ở vị trí tổng quát. Cho

các số thực t, p với 0 < tlf < p < 1. Khi đó, với 0 < r0 < R0, tồn tại một hằng số

dương K sao cho với mọi r0 < r < R < R0, ta có∫
S(r)

∣∣∣∣zα1+···+αl
Wα(f̃)

H0(f̃) . . . Hn(f̃)

∣∣∣∣tσm ≤ K

(
R2m−1

R− r
Tf (R)

)p

.

Ở đây za = za1

1 · · · zam
m với a = (a1, . . . , am) ∈ Nm.

Xét hàm phụ trợ Φ :=
Wα(f̃)

H0(f̃) . . . Hn(f̃)
. Ta có bổ đề sau đây về đánh giá

divisor cực điểm của hàm Φ.

Bổ đề 2.2.4 (xem [16, Lemma 3.4]). ν∞Φ (p) ≤ mf với mọi p thuộc Bm(R0) ngoài

một tập con giải tích có đối chiều 2.

Chúng tôi nhắc lại bổ đề sau đây về trọng Nochka của họ siêu phẳng ở vị trí

dưới tổng quát.

Bổ đề 2.2.5 (xem [34, Lemma 3.3 và Lemma 3.4]). Cho H1, ..., Hq là q siêu

phẳng trong Pn(C) ở vị trí N-dưới tổng quát, với q > 2N − n+1. Khi đó, tồn tại

các hằng số hữu tỷ dương ωi (1 ≤ i ≤ q) thỏa mãn các điều sau:

i) 0 < ωi ≤ 1, ∀i ∈ {1, ..., q},
ii) Đặt ω̃ = maxj∈Q ωj, ta có

q∑
j=1

ωj = ω̃(q − 2N + n− 1) + n+ 1.
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iii)
n+ 1

2N − n+ 1
≤ ω̃ ≤ n

N
.

iv) Cho Ei ≥ 1 (1 ≤ i ≤ q) là các số cho trước. Đối với R ⊂ {1, ..., q} với

♯R = N + 1, tồn tại một tập con Ro ⊂ R sao cho ♯Ro = rank {Hi}i∈Ro = n+ 1 và∏
i∈R

Eωi

i ≤
∏
i∈Ro

Ei.

Các hằng số ωi (1 ≤ i ≤ q) được gọi là các trọng Nochka của họ siêu phẳng

H1, . . . , Hq và hằng số ω̃ được gọi là hằng số Nochka của họ siêu phẳng này. Tiếp

theo, chúng tôi chứng minh Định lý 2.2.1.

Chứng minh Định lý 2.2.1. Bằng cách sử dụng phủ phổ dụng nếu cần thiết,

ta chỉ cần chứng minh định lý trong trường hợp M là hình cầu Bm(R0) của

Cm. Gọi {ωi}1≤i≤q là các trọng Nochka của họ siêu phẳng H1, . . . , Hq và gọi ω̃ là

hằng số Nochka của họ này. Chúng tôi giả sử rằng f có một biểu diễn rút gọn

f̃ = (f0, . . . , fn) và mỗi Hi được xác định bởi một dạng tuyến tính (cũng kí hiệu

là Hi) có dạng

Hi(x0, . . . , xn) = ai0x0 + · · ·+ ainxn = 0 (1 ≤ i ≤ q),

với aij ∈ C và
∑n

j=0 |aij |
2 = 1 (1 ≤ i ≤ q). Khi đó

Hi(f̃) = ai0f0 + · · ·+ ainfn.

Vì f là không suy biến tuyến tính nên tồn tại họ đa chỉ số chấp nhận được

α = (α0, . . . , αn) ∈ (Nm)n+1 của f̃ sao cho

Wα(f̃) := det

(
∂|αi|fj
∂zαi

; 0 ≤ i, j ≤ n

)
̸≡ 0. (2.1)

Với mỗi Ro = {ro1, ..., ron+1} ⊂ {1, ..., q} sao cho rank {Hi}i∈Ro = ♯Ro = n+ 1, ta đặt

WRo ≡ det

(
∂|αi|Hr0j

(f̃)

∂zαi
; 0 ≤ i ≤ n, 1 ≤ j ≤ n+ 1

)
.

Vì rank {Hroj (1 ≤ j ≤ n+1)} = n+1 nên tồn tại một hằng số khác không CRo sao

cho WRo = CRo ·Wα(f̃).

Gọi Ro là tập hợp tất cả các tập con Ro của {1, ..., q} sao cho rank {Hi}i∈Ro =

♯Ro = n+ 1.

30



Xét một điểm z cố định trong Bm(R0). Chúng tôi có thể giả sử rằng

|Hi1(f̃)(z)| ≤ |Hi2(f̃)(z)| ≤ · · · ≤ |Hiq(f̃)(z)|

với một hoán vị (i1, . . . , iq) của {1, . . . , q}. Đặt R = {i1, . . . , iN+1} và chọn Ro ⊂ R

sao cho Ro ∈ Ro và Ro thỏa mãn bổ đề 2.2.5 iv) với các số

{
∥f̃(z)∥

|Hi(f̃)(z)|

}q

i=1

. Ta

lưu ý rằng

∥f̃(z)∥ ≤ Cmax
i∈R

|Hi(f̃)(z)| ≤ C|Hj(f̃)(z)| ∀j ̸∈ R,

với C là một hằng số dương được chọn không phụ thuộc vào z và R. Do vậy, ta

có

∥f̃(z)∥(
∑q

i=1 ωi−n−1)|Wα(f̃)(z)|
|H1(f̃)(z)|ω1 · · · |Hq(f̃)(z)|ωq

≤ Cq−N−1|Wα(f̃)(z)|
∥f̃(z)∥n+1

∏
i∈R

(
∥f̃(z)∥

|Hi(f̃)(z)|

)ωi

≤ K
|WRo(z)| · ∥f̃(z)∥(n+1)

∥f̃(z)∥(n+1) ·
∏

i∈Ro |Hi(f̃)(z)|

= K
|WRo(z)|∏

i∈Ro |Hi(f̃)(z)|
,

trong đó K là một hằng số dương, được chọn không phụ thuộc vào z, R và Ro.

Vì
∑q

i=1 ωi − n− 1 = ω̃(q − 2N + n− 1) nên ta suy ra

∥f̃(z)∥ω̃(q−2N+n−1)|Wα(f̃)(z)|
|H1(f̃)(z)|ω1 · · · |Hq(f̃)(z)|ωq

≤ K
∑

Ro∈Ro

SRo(z), (2.2)

trong đó SRo =
|WRo |∏

i∈Ro |Hi(f̃)|
.

a) Chúng tôi chứng minh mệnh đề (a) của định lý. Đầu tiên, ta chứng minh

khẳng định sau đây.

Khẳng định 1.
∑q

i=1 ωiνHi(f̃)
−νWα(f̃)

≤ ν
[mf ]

D(f̃)
với ν[mf ]

D(f̃)
là divsior không điểm

được chặn bội mf của hàm chỉnh hình
∏q

i=1Hi(f̃).

Thật vậy, giả sử rằng z là không điểm của một số hàm Hi(f̃) và z nằm ngoài

tập không xác định I(f) của f . Vì {Hi}qi=1 ở vị trí N-dưới tổng quát nên z

không phải là điểm không của nhiều hơn N hàm Hi(f̃). Không mất tính tổng

quát, ta giả sử rằng z không phải là điểm không của Hi(f̃) với mọi i > N . Đặt

R = {1, ..., N + 1}. Chọn R1 ⊂ R sao cho

♯R1 = rank {Hi}i∈R1 = n+ 1
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và R1 thỏa mãn Bổ đề 2.2.5 iv) với các số
{
eνHi(f̃)

(z)
}q
i=1

. Từ Bổ đề 2.2.4 và Bổ

đề 2.2.5 iv), ta có

mf ≥
∑
i∈R1

νHi(f̃)
(z)− νWα(f̃)

(z) ≥
∑
i∈R

ωiνHi(f̃)
(z)− νWα(f̃)

(z).

Do đó, ∑
i∈R

ωiνHi(f̃)
(z)− νWα(f̃)

(z) ≤ min{mf , ν∏q
i=1 Hi(f̃)

(z)} = ν
[mf ]

D(f̃)
(z).

Vậy khẳng định được chứng minh.

Chúng tôi xem xét hai trường hợp sau đây:

Trường hợp a.1: M = Cm. Bằng cách tích phân hai vế của bất đẳng thức (2.2)

và sử dụng bổ đề về đạo hàm logarithm, chúng tôi có:

∥ ω̃(q − 2N + n− 1)Tf (r) +NWα(f̃)
(r)−

q∑
i=1

ωiNHi(f̃)
(r) ≤ o(Tf (r)).

Ở đây, ký hiệu “∥” có nghĩa là bất đẳng thức đúng cho mọi r ∈ [1,+∞) ngoài

một tập có độ đo Lebesgue hữu hạn. Do đó,

∥ (q − 2N + n− 1)Tf (r) ≤
1

ω̃

(
q∑

i=1

ωiNHi(f̃)
(r)−NWα(f̃)

(r)

)
+ o(Tf (r)). (2.3)

Từ Khẳng định 1, chúng tôi có “định lý chính thứ hai” như sau:

∥ (q − 2N + n− 1)Tf (r) ≤
1

ω̃
N

[mf ]

D(f̃)
(r) + o(Tf (r))

≤ 2N − n+ 1

n+ 1
N

[mf ]
D(f)

(r) + o(Tf (r)),
(2.4)

Tức là,

∥
(
qTf (r)−N

[mf ]
D(f)

(r)
)
≤
(
1− (q − 2N + n− 1)(n+ 1)

(2N − n+ 1)q

)
qTf (r) + o(Tf (r)).

Điều này kéo theo rằng

δ
[mf ]
f (D) ≤ 1− (q − 2N + n− 1)(n+ 1)

(2N − n+ 1)q

và chúng tôi đã có được quan hệ số khuyết mong muốn trong trường hợp này.
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Trường hợp a.2: M = Bm(R0) (R0 < +∞). Không mất tính tổng quát, chúng

tôi giả sử rằng R0 = 1. Giả sử phản chứng rằng

δ
[mf ]
f (D) > 1− (q − 2N + n− 1)(n+ 1)

(2N − n+ 1)q
+ 2ρ

lf
q

≥ 1− (q − 2N + n− 1)ω̃

q
+ 2ρ

lf
q
.

Khi đó, tồn tại một hằng số η > 0 và một hàm đa điều hòa dưới liên tục ũ sao

cho eũ|φ| ≤ ∥f̃∥qη, trong đó φ là một hàm chỉnh hình với νφ = ν
[mf ]

D(f̃)
và

1− η > 1− (q − 2N + n− 1)ω̃

q
+ 2

lfρ

q
,

tức là,

(q − 2N + n− 1)ω̃ − qη > 2lfρ.

Đặt u = ũ+ log|φ|, thì u là một hàm đa điều hòa dưới và eu ≤ ∥f̃∥qη. Đặt

v(z) = log
|zα0+···+αnWα(f̃)(z)|

|H1(f̃)(z)|ω1 · · · |Hq(f̃)(z)|ωq
+ u.

Ta có bất đẳng thức dòng sau đây:

2ddc[v] ≥ [νWα(f̃)
]−

q∑
j=1

ωi[νHj(f̃)
] + 2ddc[u] ≥ −[ν

[mf ]

D(f̃)
] + [ν

[mf ]

D(f̃)
] = 0

(bất đẳng thức cuối cùng có được nhờ Bổ đề 2.2.4). Điều này cho thấy v là một

hàm đa điều hòa dưới trên Bm(1).

Ta viết dạng metric Kähler đã cho dưới dạng

ω =

√
−1

2π

∑
i,j

gij̄dzi ∧ dz̄j .

Khi đó, dạng thể tích trên B(1) được cho bởi

dV := cmdet(gij̄)vm

với cm là một hằng số dương. Theo giả thiết f thỏa mãn điều kiện (Cρ) thì tồn
tại một hàm h liên tục không âm, bị chặn trên M sao cho

ρΩf +

√
−1

2π
∂∂̄logh2 ≥ Ric ω.
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Do đó, tồn tại một hàm đa điều hòa dưới liên tục ξ ̸≡ ∞ trên M sao cho

eξdV ≤ ∥f̃∥2ρvm.

Đặt

t :=
2ρ

ω̃(q − 2N + n− 1)− qη
> 0

và

λ(z) :=
|zα0+···+αnWα(f̃)(z)|

|H1(f̃)(z)|ω1 · · · |Hq(f̃)(z)|ωq
.

Chúng tôi thấy rằng

tlf < lf · 2ρ

2ρlf
= 1,

và hàm ζ = ξ+ tv là đa điều hòa dưới trên đa tạp Kähler M . Chọn một số dương

p sao cho 0 < tlf < p < 1. Khi đó, ta có

eζdV = eξ+tvdV ≤ etv∥f̃∥2ρvm = λtetu∥f̃∥2ρvm

≤ λt∥f̃∥2ρ+tqηvm = λt∥f̃∥tω̃(q−2N+n−1)vm

Vì
∑q

j=1 ωj = ω̃j(q− 2N +n− 1)+n+1 nên từ bất đẳng thức trên ta suy ra rằng

eζdV ≤ λt∥f̃∥t(
∑q

j=1 ωj−n−1)vm.

Tích phân cả hai vế của bất đẳng thức trên trên Bm(1), chúng tôi có∫
Bm(1)

eζdV ≤
∫
Bm(1)

λt∥f̃∥t(
∑q

j=1 ωj−n−1)vm

= 2m

∫ 1

0

r2m−1

(∫
S(r)

(
λ∥f̃∥(

∑q
j=1 ωj−n−1)

)t
σm

)
dr

≤ 2m

∫ 1

0

r2m−1

(∫
S(r)

∑
Ro∈Ro

∣∣zα0+···+αnKSRo

∣∣tσm) dr,

(2.5)

với SRo =
|WRo |∏

i∈Ro |Hi(f̃)|
.

Ta xét hai trường hợp nhỏ sau:

Trường hợp a.2.1: Giả sử rằng

lim
r→1

sup
Tf (r)

log1/(1− r)
<∞.
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Chọn p > 0 sao cho tlf < p < 1. Lưu ý rằng
∑n

i=0 |αi| = lf . Theo bổ đề về đạo hàm

logarithm thì tồn tại một hằng số dương K ′ sao cho: với mọi 0 < r0 < r < r′ < 1,

ta có ∫
S(r)

∣∣zα0+···+αnKSRo(z)
∣∣t σm ≤ K ′

(
r′2m−1

r′ − r
Tf (r

′)

)p

(2.6)

ngoài một tập con E ⊂ [0, 1] với
∫
E

dr
1−r < +∞. Chọn r′ = r +

1− r

eTf (r)
, ta có

Tf (r
′) ≤ 2Tf (r).

Do đó, bất đẳng thức trên suy ra rằng∑
Ro∈Ro

∫
S(r)

∣∣zα0+···+αnKSR0(z)
∣∣t σm ≤ K ′′

(1− r)p

(
log

1

1− r

)2p
với mọi r ∈ (0, 1) nằm ngoài E, trong đó K ′′ là một hằng số dương. Bằng cách

chọn K ′′ đủ lớn, chúng tôi có thể giả sử rằng bất đẳng thức trên đúng với mọi

r ∈ (0, 1). Khi đó, bất đẳng thức (2.5) kéo theo∫
Bm(1)

eudV ≤ 2m

∫ 1

0

r2m−1 K ′′

(1− r)p

(
log

1

1− r

)2p
dr < +∞.

Điều này mâu thuẫn với các kết quả của S.T. Yau [35] và L. Karp [36]. Do đó,

giả sử phản chứng là sai và chúng tôi phải có

δ
[mf ]
f (D) ≤ 1− (q − 2N + n− 1)(n+ 1)

(2N − n+ 1)q
+ 2ρ

lf
q
.

Vậy mệnh đề (a) được chứng minh trong trường hợp nhỏ này.

Trường hợp a.2.2: Giả sử rằng

lim
r→1

sup
T (r)

log1/(1− r)
= ∞.

Chúng tôi chỉ cần chứng minh định lý sau.

Định lý 2.2.6. Với giả thiết của Định lý 2.2.1 và giả sử rằng M = B(1). Khi

đó, chúng tôi có(
qTf (r)−N

[mf ]

(f̃ ,D)
(r)
)
≤
(
1− (q − 2N + n− 1)(n+ 1)

(2N − n+ 1)q

)
qTf (r)

+K ′′
(
log+

1

1− r
+ log+Tf (r)

)
+O(1),

trong đó K ′′ là một hằng số dương, với mọi 0 < r0 < r < 1 ngoài một tập E ⊂ [0, 1]

với
∫
E

dt
1−t <∞.
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Chứng minh. Lặp lại lập luận trên, chúng tôi có∫
S(r)

∥f̃∥(
∑q

i=1 ωi−n−1)|zα0+···+αnWα(f̃)|
|H1(f̃)|ω1 · · · |Hq(f̃)|ωq

σm ≤ K

(
R2m−1

R− r
Tf (R)

)p

với mọi 0 < r0 < r < R < 1. Sử dụng tính lồi của hàm logarithm, ta có∫
S(r)

log
∣∣zα0+···+αn

∣∣σm +

(
q∑

i=1

ωi − n− 1

)∫
S(r)

log∥f̃∥σm +

∫
S(r)

log|Wα(f̃)|σm

−
q∑

j=1

ωj

∫
S(r)

log|Hj(f̃)|σm ≤ K0

(
log+

1

1− r
+ log+Tf (r)

)
(2.7)

với K0 là một hằng số dương.

Hơn nữa, từ Khẳng định 1, ta thấy rằng

q∑
j=1

ωjNHj(f̃)
(r)−NWα(f̃)

(r) ≤ N
[mf ]

D(f̃)
(r) +O(1).

Kết hợp các đánh giá này với (2.7) và áp dụng công thức Jensen, ta có

∥ (

q∑
j=1

ωj − n− 1)Tf (r) ≤ N
[mf ]
D(f)

(r) +K0

(
log+

1

1− r
+ log+Tf (r)

)
+O(1).

Vì
∑q

j=1 ωj = (q − 2N + n− 1)ω̃ + n+ 1 nên bất đẳng thức trên kéo theo

(q − 2N + n− 1)Tf (r) ≤
1

ω̃
N

[mf ]
D(f)

(r) +
K0

ω̃

(
log+

1

1− r
+ log+Tf (r)

)
+O(1).

Mặt khác, vì
1

ω̃
≤ 2N − n+ 1

n+ 1
nên ta có

(q − 2N + n− 1)Tf (r) ≤
2N − n+ 1

n+ 1
N

[mf ]
D(f)

(r)

+
K0

ω̃

(
log+

1

1− r
+ log+Tf (r)

)
+O(1),

tức là, (
qTf (r)−N

[mf ]
D(f)

(r)
)
≤
(
1− (q − 2N + n− 1)(n+ 1)

(2N − n+ 1)q

)
qTf (r)

+K ′′
(
log+

1

1− r
+ log+Tf (r)

)
+O(1)
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với K ′′ là một hằng số dương. Như vậy, Định lý 2.2.6 đã được chứng minh. Do

đó, Mệnh đề (a) được chứng minh trong trường hợp nhỏ này.

b) Chúng tôi sẽ chứng minh Mệnh đề (b) của định lý. Ta lặp lại các lập luận

của phần a), trong đó Khẳng định 1 được thay thế bằng khẳng định sau.

Khẳng định 2.
∑q

i=1 ωiνHi(f̃)
− νWα(f̃)

≤
∑q

i=1 ωiν
[rf ]

Hi(f̃)
.

Thật vậy, giả sử rằng z là một không điểm của một hàm Hi(f̃) nào đó và

z nằm ngoài tập các điểm không xác định I(f) của f . Khi đó, z không thể là

không điểm của nhiều hơn N hàm Hi(f̃). Chúng tôi có thể giả sử rằng z không

phải là không điểm của Hi(f̃) với mọi i > N . Đặt R = {1, ..., N+1}. Chọn R1 ⊂ R

sao cho

♯R1 = rank {Hi}i∈R1 = n+ 1

và R1 thỏa mãn Bổ đề 2.2.5 iv) đối với các số
{
emax{0,νHi(f̃)

(z)−rf}}q
i=1

. Khi đó,

chúng tôi có∑
i∈R

ωi(νHi(f̃)
(z)− ν

[rf ]

Hi(f̃)
(z)) ≤

∑
i∈R1

(νHi(f̃)
(z)− ν

[rf ]

Hi(f̃)
(z)) ≤ νWα(f̃)

(z).

Vì vậy, ∑
i∈R

ωiνHi(f̃)
(z)− νWα(f̃)

(z) ≤
q∑

i=1

ωiν
[rf ]

Hi(f̃)
(z).

Vậy Khẳng định 2 được chứng minh.

Tương tự như trong phần chứng minh của Mệnh đề a), chúng tôi xét hai

trường hợp sau đây.

Trường hợp b.1: M = Cm. Từ (2.3) và Khẳng định 2, chúng tôi có

∥ (q − 2N + n− 1)Tf (r) ≤
q∑

i=1

1

ω̃
ωiN

[rf ]

Hi(f̃)
(r) + o(Tf (r)) ≤

q∑
i=1

N
[rf ]

Hi(f̃)
(r) + o(Tf (r)).

Điều này kéo theo
q∑

i=1

δ
[rf ]
f (Hi) ≤ 2N − n+ 1

và chúng tôi thu được quan hệ số khuyết không lấy tích phân mong muốn trong

trường hợp này.
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Trường hợp b.2: M = Bm(R0) (R0 < +∞). Không mất tính tổng quát, ta giả

sử rằng R0 = 1. Giả sử phản chứng rằng

q∑
i=1

δ
[rf ]
f (Hi) > 2N − n+ 1 + 2ρ

(2N − n+ 1)lf
(n+ 1)

≥ 2N − n+ 1 + 2ρ
lf
ω̃
.

Khi đó, với mỗi j ∈ {1, . . . , q}, ta có thể chọn các hằng số ηj > 0 và hàm đa điều

hòa dưới liên tục ũj sao cho eũj |φj | ≤ ∥f̃∥dηj , trong đó φj là một hàm chỉnh hình

với νφj = ν
[rf ]

Hj(f̃)
và

q −
q∑

j=1

ηj > 2N − n+ 1 + 2ρ
lf
ω̃
.

Đặt

t′ =
2ρ

ω̃(q − 2N + n− 1−
∑q

j=1 ηj)
> 0.

Khi đó ta có

t′lf =
2ρlf

ω̃(q − 2N + n− 1−
∑q

j=1 ηj)
< 1.

chúng tôi định nghĩa v′(z), λ′, u′, ξ′, ζ ′, p′ và S′
Ro(z) giống như v(z), λ, u, ξ, ζ, p và

SRo(z) trong phần chứng minh của phần a), trong khi đó hằng số t được thay

thế bởi hằng số mới t′. Lặp lại lần nữa chứng minh của Mệnh đề a), chúng tôi

xét hai trường hợp nhỏ sau:

Trường hợp phụ b.2.1: Nếu lim
r→1

sup
Tf (r)

log1/(1− r)
<∞ thì bất đẳng thức (2.5)

kéo theo ∫
Bm(1)

eζ
′
dV ≤ 2m

∫ 1

0

r2m−1 K ′′

(1− r)p
′

(
log

1

1− r

)2p′
dr < +∞,

và điều này mâu thuẫn với các kết quả của S.T. Yau [35] và L. Karp [36]. Do đó

giả sử phản chứng không đúng và chúng tôi phải có

q∑
i=1

δ
[rf ]
f (Hi) ≤ 2N − n+ 1 + 2ρ

(2N − n+ 1)lf
n+ 1

.

Vậy Mệnh đề (b) được chứng minh trong trường hợp nhỏ này.
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Trường hợp b.2.2: Nếu lim
r→1

sup
Tf (r)

log1/(1− r)
= ∞, thì ta có

∫
S(r)

∥f̃∥(
∑q

i=1 ωi−n−1)|zα0+···+αnWα(f̃)|
|H1(f̃)|ω1 · · · |Hq(f̃)|ωq

σm ≤ K

(
R2m−1

R− r
Tf (R)

)p

với mọi 0 < r0 < r < R < 1. Sử dụng tính lồi của hàm logarit, chúng tôi lại có∫
S(r)

log
∣∣zα0+···+αn

∣∣σm +

(
q∑

i=1

ωi − n− 1

)∫
S(r)

log∥f̃∥σm +

∫
S(r)

log|Wα(f̃)|σm

−
q∑

j=1

ωj

∫
S(r)

log|Hj(f̃)|σm ≤ K0

(
log+

1

1− r
+ log+Tf (r)

)
,

(2.8)

với K0 là một hằng số dương nào đó. Kết hợp ước lượng này với Khẳng định 2

và sử dụng công thức Jensen, ta thu được định lý cơ bản thứ hai như sau:

∥ (

q∑
j=1

ωj − n− 1)Tf (r) ≤
q∑

j=1

ωjN
[rf ]

Hj(f̃)
(r) +K0

(
log+

1

1− r
+ log+Tf (r)

)
+O(1).

Vì vậy

∥ (q − 2N + n− 1)Tf (r) ≤
1

ω̃

q∑
j=1

ωjN
[rf ]

Hj(f̃)
(r) +O

(
log+Tf (r)

)
≤

q∑
j=1

N
[rf ]

Hj(f̃)
(r) +O

(
log+Tf (r)

)
.

Định lý cơ bản thứ hai này kéo theo

q∑
j=1

δ
[rf ]
f (Hj) ≤ 2N + n− 1.

Vì vậy, Mệnh đề (b) được chứng minh trong trường hợp phụ này.

Chứng minh của định lý được hoàn tất.
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Chương 3

QUAN HỆ SỐ KHUYẾT KHÔNG LẤY

TÍCH PHÂN CHO ÁNH XẠ PHÂN

HÌNH VÀO ĐA TẠP XẠ ẢNH VÀ HỌ

SIÊU MẶT TÙY Ý

Trong chương này, chúng tôi thiết lập một quan hệ số khuyết không lấy tích

phân cho các ánh xạ phân hình từ một đa tạp Kähler đầy vào một đa tạp xạ

ảnh giao với một họ siêu mặt bất kỳ với bội được chặn bởi một mức cụ thể.

Trong kết quả của chúng tôi, cả chặn trên của tổng số khuyết và mức chặn bội

đều được ước lượng độc lập với số lượng siêu mặt tham gia. Do vậy, kết quả của

chương này sẽ cho chúng tôi một tổng quát hóa và cải tiến mạnh mẽ của các kết

quả trước đó trong chủ đề này.

Chương 3 bao gồm hai mục. Trong mục đầu tiên chúng tôi giới thiệu về trọng

Chow, trọng Hilbert và các tính chất sẽ được sử dụng trong luận án. Mục thứ

hai sẽ dành để trình bày các chứng minh chi tiết cho định lý về số khuyết không

lấy tích phân đối với các ánh xạ phân hình vào không gian xạ ảnh và đa tạp xạ

ảnh. Chương 3 được viết dựa trên bài báo [2] trong mục các công trình đã công

bố liên quan đến luận án.

3.1 Trọng Chow và trọng Hilbert

Trong mục này chúng tôi trình bày khái niệm Trọng Chow và trọng Hilbert dựa

theo các tài liệu [24], [37] và [38].

Cho X ⊂ Pn(C) là một đa tạp xạ ảnh có chiều k ≤ n và bậc δ. Dạng Chow
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trên X là một đa thức duy nhất (sai khác một bội số là một hằng số khác không)

có dạng

FX(u0, . . . ,uk) = FX(u00, . . . , u0n; . . . ;uk0, . . . , ukn)

với k+1 khối biến ui = (ui0, . . . , uin), với i = 0, . . . , k, thỏa mãn ba tính chất sau:

� FX bất khả quy trong C[u00, . . . , ukn];

� FX là đa thức thuần nhất bậc δ theo các khối ui, với i = 0, . . . , k;

� FX(u0, . . . ,uk) = 0 khi và chỉ khi các siêu phẳng

ui0x0 + · · ·+ uinxn = 0, i = 0, . . . , k,

không có điểm chung trên X.

Chúng tôi có định nghĩa trọng Chow như sau.

Định nghĩa 3.1.1. Cho FX là dạng Chow của X. Đặt c = (c0, . . . , cn) là bộ gồm

các số thực trong Rn+1
≥0 . Xét biểu diễn sau theo biến phụ trợ t:

FX(tc0u00, . . . , t
cnu0n; . . . ; t

c0uk0, . . . , t
cnukn)

= te0G0(u0, . . . ,un) + · · ·+ terGr(u0, . . . ,un),

với G0, . . . , Gr ∈ C[u00, . . . , u0n; . . . ;uk0, . . . , ukn] và e0 > e1 > · · · > er. Khi đó,

trọng Chow của X tương ứng với c được định nghĩa bởi

eX(c) := e0.

Với mỗi tập con J = {j0, . . . , jk} của {0, . . . , n} sao cho j0 < j1 < · · · < jk, ta

định nghĩa kí hiệu móc

[J ] = [J ](u0, . . . ,un) := det(uijt), i, t = 0, . . . , k,

trong đó, ui = (ui0, . . . , uin) ký hiệu cho khối gồm n+ 1 biến.

Gọi J1, . . . , Jβ, với β =
(
n+1
k+1

)
, là tập tất cả các tập con gồm k + 1 phần tử

của {0, . . . , n}. Khi đó, dạng Chow FX của X có thể được viết dưới dạng một đa

thức thuần nhất bậc δ theo các kí hiệu móc [J1], . . . , [Jβ]. Ta có thể thấy rằng

với c = (c0, . . . , cn) ∈ Rn+1 và với mọi J trong J1, . . . , Jβ, có

[J ](tc0u00, . . . , t
cnu0n, . . . , t

c0uk0, . . . , t
cnukn)

= t
∑

j∈J cj [J ](u00, . . . , u0n, . . . , uk0, . . . , ukn).
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Với a = (a0, . . . , an) ∈ Zn+1
≥0 , ký hiệu xa là đơn thức xa0

0 · · · xan
n và đặt

a · c := a0c0 + · · ·+ ancn.

Gọi I = IX là ideal nguyên tố trong C[x0, . . . , xn] xác định X. Ký hiệu không

gian vector các đa thức thuần nhất trong C[x0, . . . , xn] có bậc u (gồm cả đa thức

0) là C[x0, . . . , xn]u. Với mỗi u = 1, 2, . . ., đặt Iu := C[x0, . . . , xn]u∩ I và định nghĩa

hàm Hilbert HX của X bởi

HX(u) := dim(C[x0, . . . , xn]u/Iu), u = 1, 2, . . . .

Theo công thức Hilbert-Serre trong lý thuyết về đa thức Hilbert, với m đủ

lớn, ta có

HX(u) = δ · u
k

k!
+O(uk−1),

Ta định nghĩa trọng Hilbert như sau.

Định nghĩa 3.1.2. Trọng Hilbert SX(u, c) thứ u của X tương ứng với bộ c =

(c0, . . . , cn) ∈ Rn+1 được định nghĩa bởi

SX(u, c) := max

HX(u)∑
i=1

ai · c

 ,

ở đây, giá trị lớn nhất được lấy trên tập tất cả các đơn thức xa1 , . . . ,xaHX (u) mà

lớp đồng dư theo modulo I tạo thành cơ sở của C[x0, . . . , xn]u/Iu.

Định lý sau được phát biểu dựa theo J. Evertse và R. Ferretti [23] và được

phát biểu lại trong [37] bởi M. Ru cho trường hợp đặc biệt khi trường K = C.

Định lý 3.1.3 (xem Định lý 4.1 [23], Định lý 2.1 [37]). Giả sử X ⊂ Pn(C)

là một đa tạp đại số có chiều k và bậc δ. Gọi u > δ là một số nguyên và

c = (c0, . . . , cn) ∈ Rn+1
⩾0 . Khi đó, ta có

1

uHX(u)
SX(u, c) ≥ 1

(k + 1)δ
eX(c)− (2k + 1)δ

u
·
(

max
i=0,...,n

ci

)
.

Chúng tôi nhắc lại định nghĩa khái niêm hằng số phân bố của một họ các

siêu mặt được đưa ra bởi S. Đ. Quang trong [26] như sau.
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Định nghĩa 3.1.4 (xem [26, Định nghĩa 3.3]). Cho Q = {Q1, . . . , Qq} là họ q

siêu mặt trong Pn(C). Hằng số phân bố ∆Q,X của họ Q tương ứng với đa tạp con

X của Pn(C) được định nghĩa bởi

∆Q,V := max
∅̸=Γ⊂{1,...,q}

♯Γ

dimV − dim
(
V ∩

⋂
j∈ΓQj

) .
Ở đây, ta quy ước dim ∅ = −∞. Với V = Pn(C), ta sẽ viết ∆Q thay cho ∆Q,Pn(C).

Bổ đề sau đây về chặn dưới của trọng Chow được đưa ra bởi S. D. Quang

trong [38].

Bổ đề 3.1.5 (xem [38, Lemma 3.2]). Giả sử Y là một đa tạp con xạ ảnh của

PR(C) với chiều k ≥ 1 và bậc δY . Gọi l (l ≥ k + 1) là một số nguyên và c =

(c0, . . . , cR) là một bộ các số thực không âm. Gọi H = {H0, . . . , HR} là một họ

các siêu phẳng trong PR(C) được xác định bởi Hi = {yi = 0} (0 ≤ i ≤ R). Gọi

{i1, . . . , il} là một tập con của {0, . . . , R} thỏa mãn:

(1) cil = min{ci1 , . . . , cil},

(2) Y ∩
⋂l−1

j=1Hij ̸= ∅,

(3) và Y ̸⊂ Hij với mọi j = 1, . . . , l.

Gọi ∆H,Y là hằng số phân bố của họ H = {Hij}lj=1 đối với Y . Khi đó,

eY (c) ≥
δY

∆H,Y
(ci1 + · · ·+ cil).

3.2 Quan hệ số khuyết không lấy tích phân cho các

ánh xạ phân hình từ đa tạp Kähler với họ siêu

mặt tùy ý

Trong mục này, chúng tôi sẽ chứng minh một quan hệ số khuyết không lấy tích

phân cho ánh xạ phân hình từ đa tạp Kähler đầy vào đa tạp xạ ảnh với họ mục

tiêu là các siêu mặt tùy ý. Cụ thể, chúng tôi sẽ chứng minh định lý sau.

Định lý 3.2.1. Cho M là một đa tạp Kähler đầy có chiều m và ω là dạng Kähler

của M . Giả sử M có phủ phổ dụng song chỉnh hình với một hình cầu trong Cm.
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Cho f là ánh xạ phân hình không suy biến đại số từ M vào một đa tạp con V

có chiều k trong Pn(C). Cho Q = {Q1, . . . , Qq} là họ các siêu mặt trong Pn(C)

với hằng số phân bố ∆Q,V đối với V . Gọi d = lcm{degQ1, . . . , degQq} và cho ρ

là một số không âm. Giả sử rằng tồn tại một hàm số h ≥ 0 liên tục và bị chặn

trên M sao cho

ρΩf + ddclogh2 ≥ Ric ω.

Khi đó, với mỗi ϵ > 0, ta có

q∑
j=1

δ
[L−1]
f (Qj) ≤ ∆Q,V (k + 1) + ϵ+

ρ(L− 1)(k + 1)

ud
,

trong đó

u = ⌈∆Q,V (2k+1)(k+1)dk deg(V )(∆Q,V (k+1)ϵ−1+1)⌉ và L = dk deg(V )k
(
k + u

k

)
.

Ở đây, ⌈x⌉ là số nguyên nhỏ nhất không nhỏ hơn số thực x.

Nhận xét: a) Với L trong Định lý 3.2.1, ta có

L ≤ dk
2+k deg(V )k+1ek∆k

Q,V (2k + 5)k(∆Q,V (k + 1)ϵ−1 + 1)k.

Vì vậy, tổng số khuyết thu được từ Định lý 3.2.1 được chặn trên bởi lượng:

∆Q,V (k + 1) + ϵ+∆k−1
Q,V

ρdk
2−1 deg(V )kek(2k + 5)k(∆Q,V (k + 1)ϵ−1 + 1)k−1

2k + 1
.

b) Nếu V = Pn(C) và Q ở vị trí tổng quát trong Pn(C) thì deg(V ) = 1, k =

n,∆Q,V = 1 và tổng số khuyết thu được từ Định lý 3.2.1 được chặn bởi

n+1+ ϵ+
ρdn

2−1en(2n+ 5)n((n+ 1)ϵ−1 + 1)n−1

2n+ 1
∼= n+1+ ϵ+O(2nendn

2

(nϵ−1)n−1)ρ.

Lưu ý rằng, đại lượng chặn trên cho tổng số khuyết được M. Ru và S. Sogome

[10] đưa ra trong trường hợp này là: n+ 1 + ϵ+O(22n
2+4ne2nd4n−1(nϵ−1)2n)ρ.

c) Ánh xạ f được nói là bị rẽ nhánh trên một siêu mặt Q với bội ít nhất là

m nếu hoặc f(M) ⊂ Q hoặc νQ(f)(z) ≥ m với mọi z ∈ Supp νQ(f). Bằng cách chọn

ϵ = 1
2 , từ Định lý 3.2.1 chúng tôi thu được hệ quả sau.

Hệ quả 3.2.2. Giả sử M,ω, V,Q = {Q1, . . . , Qq} và d như trong Định lý 3.2.1.

Gọi f là một ánh xạ phân hình từ M vào V . Giả sử rằng với một số ρ ≥ 0, tồn
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tại một hàm h ≥ 0 liên tục bị chặn trên M sao cho ρΩf + ddclogh2 ≥ Ric ω. Nếu

f bị rẽ nhánh trên mỗi Qi với bội số ít nhất là mi (1 ≤ i ≤ q) sao cho

q∑
j=1

(
1− L− 1

mi

)
> ∆Q,V (k + 1) +

1

2
+
ρ(L− 1)(k + 1)

ud
,

trong đó u = ⌈∆Q,V (2k+1)(k+1)dk deg(V )(2∆Q,V (k+1)+1)⌉ và L = dk deg(V )k
(
k+u
k

)
,

thì f là ánh xạ phân hình suy biến đại số.

Chứng minh Định lý 3.2.1. Bằng cách sử dụng phủ phổ dụng nếu cần thiết,

ta chỉ cần chứng minh định lý trong trường hợp M là hình cầu Bm(R0) của

Cm. Ta cũng sử dụng chung kí hiệu Qj (1 ≤ j ≤ q) để chỉ đa thức thuần nhất

có bậc dj xác định của siêu mặt Qj nếu không gây nhầm lẫn. Bằng cách thay

Qj bởi Qd/dj
j (j = 1, . . . , q) nếu cần thiết, ta có thể giả sử tất cả các siêu mặt

Qj (1 ≤ j ≤ q) đều có cùng bậc d, nghĩa là degQj = d.

Xét ánh xạ Φ từ V vào Pq−1(C) biến mỗi điểm x = (x0 : · · · : xn) ∈ V thành

điểm Φ(x) ∈ Pq−1(C) được cho bởi

Φ(x) = (Q1(x) : · · · : Qq(x)),

trong đó x = (x0, . . . , xn). Ta đặt Φ̃(x) = (Q1(x), . . . , Qq(x)) và cố định một biểu

diễn rút gọn f̃ = (f0, . . . , fn) của f .

Đặt Y = Φ(V ). Vì V ∩
⋂q

j=1Qj = ∅ nên Φ là một ánh xạ kiểu hữu hạn trên

V , và Y là một đa tạp con xạ ảnh phức của Pq−1(C) với dimY = k và bậc

δ := deg(Y ) ≤ dk · deg(V ).

Với mỗi a = (a1, . . . , aq) ∈ Zq
≥0 và y = (y1, . . . , yq), chúng tôi ký hiệu ya =

ya1

1 . . . y
aq
q . Với một số nguyên dương u, ta đặt ξu :=

(
q+u
u

)
và định nghĩa

Yu := C[y1, . . . , yq]u/(IY )u.

Khi đó Yu là một không gian vector trên C có chiều bằng HY (u). Đặt nu =

HY (u) − 1 và lấy v0, . . . , vnu là các đa thức thuần nhất trong C[y1, . . . , yq]u, sao

cho các lớp tương đương của chúng tạo thành một cơ sở của Yu.

Bây giờ, ta xét ánh xạ phân hình F từ Bm(R0) vào Pnu(C) với biểu diễn rút

gọn được cho bởi

F̃ = (v0(Φ̃ ◦ f̃), . . . , vnu(Φ̃ ◦ f̃)).
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Vì f là không suy biến đại số nên F là không suy biến tuyến tính. Do đó, tồn

tại một họ đa chỉ số chấp nhận được α = (α0, . . . , αnu) ∈ (Zm
+ )nu+1 sao cho

Wα(F0, . . . , Fnu) = det(Dαi(vs(Φ ◦ f̃)))0≤i,s≤nu ̸= 0.

Cố định một điểm z ∈ Bm(R0) sao cho Qi(f̃(z)) ̸= 0 với mọi i = 1, . . . , q. Chúng

tôi định nghĩa

cz = (c1,z, . . . , cq,z) ∈ Zq,

với

ci,z := log
∥f̃(z)∥d∥Qi∥
|Qi(f̃)(z)|

≥ 0 với i = 1, . . . , q.

Theo định nghĩa của trọng Hilbert, tồn tại a0,z, . . . , anu,z ∈ Nq với

aj,z = (aj,1,z, . . . , aj,q,z),

với aj,i,z ∈ {1, . . . , u}, sao cho các lớp đồng dư của ya0,z , . . . ,yanu,z theo modulo

(IY )u tạo thành một cơ sở của C[y1, . . . , yq]u/(IY )u và

SY (u, cz) =

nu∑
j=0

aj,z · cz.

Ta thấy rằng yaj,z ∈ Yu (modulo (IY )u). Do đó, ta có thể viết

yaj,z = Lj,z(v0, . . . , vnu),

trong đó các Lj,z (0 ≤ j ≤ nu) là các dạng tuyến tính độc lập.

Ta có

log

nu∏
j=0

|Lj,z(F̃ (z))| = log

nu∏
j=0

q∏
i=1

|Qi(f̃(z))|aj,i,z

= −SY (u, cz) + du(nu + 1)log∥f̃(z)∥+O(u(nu + 1)).

Do đó,

SY (u, cz) = log

nu∏
j=0

1

|Lj,z(F̃ (z))|
+ du(nu + 1)log∥f̃(z)∥+O(u(nu + 1)). (3.1)

Từ Định lý 3.1.3, chúng tôi có

1

u(nu + 1)
SY (u, cz) ≥

1

(k + 1)δ
eY (cz)−

(2k + 1)δ

u
max
1≤i≤q

ci,z (3.2)
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Kết hợp (3.1) và (3.2), chúng tôi có

1

(k + 1)δ
eY (cz) ≤

1

u(nu + 1)
log

nu∏
j=0

1

|Lj,z(F̃ (z))|
+ dlog∥f̃(z)∥

+
(2k + 1)δ

u

q∑
i=1

log
∥f̃(z)∥d∥Qi∥
|Qi(f̃)(z)|

+O(1/u).

(3.3)

Giả sử rằng c1,z ≥ c2,z ≥ · · · ≥ cq,z và ký hiệu l là chỉ số nhỏ nhất sao cho

V ∩
⋂l

j=1Qj = ∅. Theo Bổ đề 3.1.5, chúng tôi có

eY (cz) ≥
δ

∆Q,V
(c1,z + · · ·+ cl,z) =

δ

∆Q,V

(
q∑

i=1

log
∥f̃(z)∥d∥Qi∥
|Qi(f̃)(z)|

)

=
δ

∆Q,V

(
q∑

i=1

log
∥f̃(z)∥d∥Qi∥
|Qi(f̃)(z)|

)
+O(1).

(3.4)

Do đó, từ (3.3) và (3.4), chúng tôi có

1

∆Q,V
log

q∏
i=1

∥f̃(z)∥d

|Qi(f̃)(z)|
≤ k + 1

u(nu + 1)
log

nu∏
j=0

1

|Lj,z(F̃ (z))|
+ d(k + 1)log∥f̃(z)∥

+
(2k + 1)(k + 1)δ

u

q∑
i=1

log
∥f̃(z)∥d∥Qi∥
|Qi(f̃)(z)|

+O(1),

(3.5)

trong đó, đại lượng O(1) không phụ thuộc vào z.

Đặt m0 = (2k + 1)(k + 1)δ và b =
k + 1

u(nu + 1)
. Từ (3.5), chúng tôi có

log
∥f̃(z)∥

1
∆Q,V

dq−d(k+1)− dm0q

u |Wα(F̃ (z))|b∏q
i=1 |Qi(f̃)(z)|

1
∆Q,V

−m0
u

≤ blog
|Wα(F̃ (z))|∏nu

j=0 |Lj,z(F̃ (z))|
+O(1). (3.6)

Ở đây, chúng tôi lưu ý rằng Lj,z phụ thuộc vào i và z, nhưng số lượng các dạng

tuyến tính này là hữu hạn (tối đa là ξu). Chúng tôi ký hiệu L là tập hợp tất cả

các Lj,z xuất hiện trong các bất đẳng thức trên.

Khi đó, từ (3.6), tồn tại một hằng số dương K0 sao cho

∥f̃(z)∥
1

∆Q,V
dq−d(k+1)− dm0q

u .|Wα(F̃ (z))|b∏q
i=1 |Qi(f̃)(z)|

1
∆Q,V

−m0
u

≤ Kb
0.S

b
J , (3.7)

trong đó SJ =
|Wα(F̃ (z))|∏
L∈J |L(F̃ (z))|

với mỗi J ⊂ L sao cho #J = nu + 1 và {L ∈ J }

là họ các dạng tuyến tính độc lập.
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Chúng tôi đi ước lượng divisor νWα(F̃ ). Cố định một điểm z ∈ Bm(R0) nằm

ngoài tập không xác định của f . Giả sử rằng

max{0, ν0
Q1(f̃)

(z)− nu} ≥ · · · ≥ max{0, ν0
Qq(f̃)

(z)− nu}

và đặt l như trên. Chúng tôi đặt ci = max{0, ν0
Qi(f̃)

(z)− nu} và

c = (c1, . . . , cq) ∈ Zq
≥0.

Rõ ràng là ci = 0 đối với tất cả các i ≥ l. Do đó, tồn tại

aj = (aj,1, . . . , aj,p), aj,s ∈ {1, . . . , u}, j = 0, . . . , nu

sao cho ya0 , . . . ,yanu tạo thành một cơ sở của Yu và

SY (m, c) =

nu∑
j=0

aj · c.

Tương tự như trên, ta viết yaj = Lj(v0, . . . , vnu), trong đó L0, . . . , Lnu là các dạng

tuyến tính độc lập theo các biến yi (1 ≤ i ≤ q). Theo tính chất của Wronskian

tổng quát, chúng tôi có

Wα(F̃ ) = cWα(L0(F̃ ), . . . , Lnu(F̃ )),

trong đó c là một hằng số khác không. Điều này dẫn đến

ν0
Wα(F̃ )

(z) = ν0
Wα(L1(F̃ ),...,LHY (u)(F̃ ))

(z) ≥
nu∑
j=0

max{0, ν0
Lj(F̃ )

(z)− nu}.

Chúng tôi cũng dễ dàng thấy rằng ν0
Lj(F̃ )

(z) =
∑q

i=1 aj,iν
0
Qi(f̃)

(z), và do đó

max{0, ν0
Lj(F̃ )

(z)− nu} ≥
q∑

i=1

aj,ici = aj · c.

Vì vậy, chúng tôi có

ν0
Wα(F̃ )

(z) ≥
nu∑
j=0

aj · c = SY (u, c). (3.8)

Theo Bổ đề 3.1.5 chúng tôi có

eY (c) ≥
δ

∆Q,V

l∑
i=1

ci =
δ

∆Q,V

q∑
j=1

max{0, ν0
Qi(f̃)

(z)− nu}.
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Mặt khác, theo Định lí 3.1.3 chúng tôi có

SY (u, c) ≥
u(nu + 1)

(k + 1)δ
eY (c)− (2k + 1)δ(nu + 1) max

1≤i≤q
ci

≥ u(nu + 1)

(k + 1)∆Q,V

q∑
i=1

max{0, ν0
Qi(f̃)

(z)− nu}

− (2k + 1)δ(nu + 1)

q∑
i=1

max{0, ν0
Qi(f̃)

(z)− nu}.

Kết hợp bất đẳng thức này với (3.8), chúng tôi có

bν0
Wα(F̃ )

(z) ≥
(

1

∆Q,V
− m0

u

) q∑
j=1

max{0, ν0
Qi(f̃)

(z)− nu}. (3.9)

Do đó,(
1

∆Q,V
− m0

u

) q∑
i=1

ν0
Qi(f̃)

(z)− bν0
Wα(F̃ )

(z) ≤
(

1

∆Q,V
− m0

u

) q∑
i=1

min{ν0
Qi(f̃)

(z), nu}.

Đặt x = 1
∆Q,V

− m0

u , từ bất đẳng thức trên chúng tôi có(
1

∆Q,V
− m0

u

)
bν0

Wα(F̃ )
(z)− x

(
q∑

i=1

ν0
Qi(f̃)

(z)−min{ν0
Qi(f̃)

(z), nu}

)
≥ 0. (3.10)

Chúng tôi giả sử rằng

ρΩf +

√
−1

2π
∂∂̄logh2 ≥ Ricω.

và
q∑

j=1

δ
[nu]
f (Qj) >

k + 1

x
+
ρnu(nu + 1)b

d
.

Khi đó, với mỗi j ∈ {1, . . . , q}, tồn tại các hằng số ηj > 0 và hàm đa điều hòa

dưới liên tục ũj sao cho eũj |φj | ≤ ∥f̃∥dηj , trong đó φj là một hàm chỉnh hình với

νφj = min{ν0
Qi(f̃)

, nu} và

q −
q∑

j=1

ηj >
k + 1

x
+
ρnu(nu + 1)b

dx
.

Đặt uj = ũj + log|φj |, thì uj là một hàm đa điều hòa dưới và

euj ≤ ∥f̃∥dηj , j = 1, . . . , q.
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Đặt

v(z) = log

∣∣∣∣∣(zα0+···+αnu )b

∣∣Wα(F̃ (z))
∣∣b∏q

i=1

∣∣Qi(f̃)(z)
∣∣x
∣∣∣∣∣+ x

q∑
j=1

uj(z).

Do đó, ta có bất đẳng thức dòng sau đây

2ddc[v] ≥ b[νWα(F̃ )]− x

q∑
j=1

[νQi(f̃)
] + x

q∑
j=1

2ddc[uj ]

≥ b[νWα(F̃ )]− x

(
q∑

j=1

[νQi(f̃)
]−

q∑
j=1

[min{nu, νQi(f̃)
}]

)
≥ 0.

Điều này chứng tỏ rằng v là một hàm đa điều hòa dưới trên Bm(R0).

Mặt khác, theo điều kiện về độ tăng cho ảnh của f , tồn tại một hàm đa điều

hòa dưới liên tục ω ̸≡ ∞ trên Bm(R0) sao cho

eωdV ≤ ∥f̃∥2ρvm.

Đặt

t =
2ρ

dx
(
q − k+1

x −
∑q

j=1 ηj

) > 0

và

λ(z) =

∣∣∣∣∣(zα0+···+αnu )b

∣∣Wα(F̃ (z))
∣∣b∣∣Q1(f̃)(z) · · ·Qq(f̃)(z)

∣∣x
∣∣∣∣∣ .

Rõ ràng rằng
nu(nu + 1)b

2
t < 1, và hàm ζ = ω+ tv là đa điều hòa dưới trên đa

tạp Kähler M . Chọn một số dương γ sao cho 0 <
nu(nu + 1)b

2
t < γ < 1. Khi đó,

ta có

eζdV = eω+tvdV ≤ etv∥f̃∥2ρvm = |λ|t(
q∏

j=1

etxuj)∥f̃∥2ρvm

≤ |λ|t∥f̃∥2ρ+tx
∑q

j=1 dηjvm = |λ|t∥f̃∥dtx(q−
k+1
x

)vm.

(3.11)

(a) Trước tiên, ta xét trường hợp R0 < ∞ và lim
r→R0

sup
Tf (r)

log1/(R0 − r)
< ∞.

Chúng tôi chỉ cần chứng minh Định lý trong trường hợp Bm(R0) = Bm(1).
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Tích phân hai vế của (3.11) trên Bm(1) và sử dụng (3.7), ta có∫
Bm(1)

eζdV ≤
∫
Bm(1)

|λ|t∥f̃∥dtx(q−
k+1
x

)vm.

= 2m

∫ 1

0

r2m−1

(∫
S(r)

(
|λ|∥f̃∥dxq−d(k+1)

)t
σm

)
dr

≤ 2m

∫ 1

0

r2m−1

(∫
S(r)

∑
J

∣∣(zα0+···+αnu )K0SJ
∣∣btσm) dr,

(3.12)

trong đó, phép tổng được thực hiện trên tất cả J ⊂ L với ♯J = nu+1 và {L ∈ J }
là tuyến tính độc lập.

Chúng tôi lưu ý rằng (
∑nu

i=0 |αi|)bt ≤
nu(nu + 1)b

2
t < γ < 1. Do đó, theo Mệnh

đề 2.2.3, tồn tại một hằng số dương K1 sao cho, với mọi 0 < r0 < r < r′ < 1, ta

có ∫
S(r)

∣∣(zα0+···+αnu )K0SJ (z)
∣∣bt σm ≤ K1

(
r′2m−1

r′ − r
dTf (r

′)

)γ

.

Chọn r′ = r +
1− r

eTf (r)
, ta có Tf (r′, r0) ≤ 2Tf (r) ngoài một tập hợp con E ⊂ [0, 1]

với
∫
E

dr

1− r
< +∞. Do đó, bất đẳng thức trên suy ra tồn tại một hằng số dương

K sao cho ∫
S(r)

∣∣(zα1+···+αnu )K0SJ(z)
∣∣bt σm ≤ K

(1− r)γ

(
log

1

1− r

)γ
với mọi r ∈ (0; 1) và nằm ngoài E. Bằng cách chọn K đủ lớn, ta có thể giả sử

rằng bất đẳng thức trên đúng với mọi r ∈ (0; 1).

Do vậy, bất đẳng thức (3.12) kéo theo∫
Bm(1)

eζdV ≤ 2m

∫ 1

0

r2m−1 K

(1− r)γ

(
log

1

1− r

)γ
dr < +∞

Điều này mâu thuẫn với các kết quả của S. T. Yau và L. Karp (xem [36, 35]).

Do đó, chúng tôi có
q∑

j=1

δ
[nu]
f (Qj) ≤

k + 1

x
+
ρnu(nu + 1)b

d
=
k + 1

x
+
ρnu(k + 1)

ud
.

Mặt khác, chúng tôi có u ≥ ∆Q,Vm0(∆Q,V (k + 1) + ϵ)ϵ−1. Điều này suy ra rằng
∆Q,V m0

u ≤ ϵ
∆Q,V (k+1)+ϵ

= 1− ∆Q,V (k+1)
∆Q,V (k+1)+ϵ

. Do đó

k + 1

x
=

k + 1
1

∆Q,V
− m0

u

=
∆Q,V (k + 1)

1− ∆Q,V m0

u

≤ ∆Q,V (k + 1) + ϵ. (3.13)
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Chúng tôi có nu = HY (u) − 1 ≤ δ
(
k+u
k

)
− 1 ≤ dk deg(V )

(
k+u
k

)
− 1 = L − 1. Do đó,

chúng tôi có

q∑
j=1

δ
[L−1]
f (Qj) ≤ ∆Q,V (k + 1) + ϵ+

ρ(k + 1)(L− 1)

ud
.

Chúng tôi ước lượng L như sau. Nếu k = 1 thì

L = d deg(V )(1 + u)

< d deg(V )
(
∆Q,V 6d deg(V )(2∆Q,V ϵ

−1 + 1) + 2
)

< d2 deg(V )2e∆Q,V 7(2∆Q,V ϵ
−1) + 1).

Ngược lại, nếu k ≥ 2 thì

L ≤ dk deg(V )ek
(
1 +

u

k

)k
< dk deg(V )ek

(
1 +

dk deg(V )∆Q,V (2k + 1)(k + 1)(∆Q,V (k + 1)ϵ−1 + 1) + 1

k

)k

< dk
2+k deg(V )k+1ek∆k

Q,V (2k + 5)k(∆Q,V (k + 1)ϵ−1 + 1)k.

(b) Cuối cùng, ta xét trường hợp còn lại khi lim
r→R0

sup
Tf (r)

log
(
1/(R0 − r)

) = ∞

hoặc R0 = +∞. Rõ ràng là chúng tôi chỉ cần chứng minh định lý sau đây.

Định lý 3.2.3. Với giả thiết của Định lý 3.2.1, chúng tôi có

(q −∆Q,V (k + 1)− ϵ)Tf (r) ≤
q∑

i=1

1

d
N

[L−1]

Qi(f̃)
(r) + S(r),

trong đó S(r) được đánh giá như sau:

(i) Trong trường hợp R0 <∞ thì

S(r) ≤ K(log+
1

R0 − r
+ log+Tf (r))

với mọi 0 < r0 < r < R0 ngoài một tập E ⊂ [0, R0] với
∫
E

dt

R0 − t
< ∞ và K là

một hằng số dương.

(ii) Trong trường hợp R0 = ∞ thì

S(r) ≤ K(logr + log+Tf (r))

với mọi 0 < r0 < r < ∞ ngoài một tập E′ ⊂ [0,∞] với
∫
E′ dt < ∞ và K là một

hằng số dương.
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Chứng minh. Lặp lại lập luận trên, chúng tôi có∫
S(r)

∣∣∣∣(zα0+···+αnu )b
∥f̃(z)∥xdq−d(k+1)|Wα(F̃ )(z)|b∏q

i=1 |Qi(f̃)(z)|x

∣∣∣∣t σm ≤ K1

(
R2m−1

R− r
dTf (R)

)δ

.

với mọi 0 < r0 < r < R < R0. Sử dụng tính lồi của hàm logarit, chúng tôi có

b

∫
S(r)

log|(zα0+···+αnu )|σm + (xdq − d(k + 1))

∫
S(r)

log∥f̃∥σm

+ b

∫
S(r)

log|Wα(F̃ )|σm − x

q∑
j=1

∫
S(r)

log|Qj(f̃)|σm ≤ K

(
log+

R

R− r
+ log+Tf (R)

)

với một hằng số dương K nào đó. Theo công thức Jensen, bất đẳng thức này

kéo theo

(
xdq − d(k + 1)

)
Tf (r) + bNWα(F̃ )(r)− x

q∑
i=1

NQi(f̃)
(r)

≤ K
(
log+

R

R− r
+ log+Tf (R)

)
+O(1).

(3.14)

Từ (3.9), ta có

x

q∑
i=1

NQi(f̃)
(r)− bNWα(F̃ )(r) ≤ x

q∑
i=1

N
[L−1]

Qi(f̃)
(r).

Kết hợp ước lượng này với (3.14), ta được

(
q − k + 1

x

)
Tf (r) ≤

q∑
i=1

1

d
N

[L−1]

Qi(f̃)
(r) +

K

x

(
log+

R

R− r
+ log+Tf (R)

)
+O(1). (3.15)

Chọn R = r +
R0 − r

eTf (r)
nếu R0 <∞ và R = r +

1

Tf (r)
nếu R0 = ∞, ta có

Tf
(
r +

R0 − r

eTf (r)

)
≤ 2Tf (r)

với mọi r ∈ [0, R0) ngoài một tập con E ⊂ [0, R0) với
∫
E

dr

R0 − r
< +∞ trong

trường hợp R0 <∞ và

Tf
(
r +

1

Tf (r)

)
≤ 2Tf (r)
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ngoài một tập con E′ ⊂ [0,∞) với
∫
E′ dr < ∞ trong trường hợp R0 = ∞. Do đó,

từ (3.13) và (3.15), ta thu được bất đẳng thức mong muốn của Định lý 3.2.3.

(q −∆Q,V (k + 1)− ϵ)Tf (r) ≤
q∑

i=1

1

d
N

[L−1]

Qi(f̃)
(r) + S(r).

Quay trở lại trường hợp (b). Từ Định lý 3.2.3, ta có

q∑
j=1

δ
[L−1]
f (Qj) ≤

q∑
j=1

δ
[L−1]
f,∗ (Qj) ≤ ∆Q,V (k + 1) + ϵ.

Định lý 3.2.1 được chứng minh trong trường hợp này. □
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Chương 4

ÁNH XẠ PHÂN HÌNH TRÊN ĐA TẠP

KÄHLER CÓ CHUNG ẢNH NGƯỢC

MỘT SỐ SIÊU PHẲNG

Chương 4 bao gồm ba mục. Mục đầu tiên trình bày và chứng minh định lý

duy nhất cho ánh xạ phân hình có chung ảnh ngược với một họ các siêu phẳng ở

vị trí dưới tổng quát. Mục thứ hai đưa ra chứng minh chi tiết cho hai định lý về

các ánh xạ phân hình không suy biến vi phân chia sẻ yếu một họ các siêu phẳng.

Trong mục cuối cùng, chúng tôi chứng minh một định lý các ánh xạ phân hình

chung ảnh ngược đối với các họ siêu phẳng khác nhau.

Chương 4 được viết dựa trên một phần của bài báo [1], bài báo [3] và [4]

trong mục các công trình đã công bố liên quan đến luận án.

4.1 Định lý duy nhất cho ánh xạ phân hình và họ

siêu mặt ở vị trí dưới tổng quát.

Trong phần này, chúng tôi sẽ chứng minh định lý duy nhất sau về các ánh xạ

phân hình trên đa tạp Kähler có chung ảnh ngược đối với một họ các siêu phẳng

ở vị trí dưới tổng quát.

Định lý 4.1.1. Cho M là một đa tạp Kähler đầy có phủ phổ dụng song chỉnh

hình với hình cầu B(R0) ⊂ Cm (0 < R0 ≤ ∞). Cho f, g : M → Pn(C) là các ánh

xạ phân hình không suy biến tuyến tính. Giả sử rằng f và g thỏa mãn điều kiện

(Cρ) với một hằng số không âm ρ và tồn tại q siêu phẳng H1, . . . , Hq của Pn(C)

ở vị trí N-dưới tổng quát sao cho f = g trên
⋃q

j=1

(
f−1(Hi) ∪ g−1(Hi)

)
.
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a) Nếu q > 2N − n+ 1 +mf +mg +
(lf + lg)

n+ 1
(2N − n+ 1)ρ thì f ≡ g.

b) Nếu q > 2N − n+ 1 +
2nq

q + 2n− 2
+

(lf + lg)

n+ 1
(2N − n+ 1)ρ và giả sử thêm

dim f−1(Hi) ∩ f−1(Hj) ≤ m− 2 (1 ≤ i < j ≤ q)

thì f ≡ g.

Ta nhắc lại rằng ℓf ,mf (tương tự cho ℓg,mg) là các số nguyên dương chỉ phụ

thuộc vào f và được định nghĩa trong Chương 2. Hơn nữa, ta có

0 ≤ mf ≤ lf ≤ n(n+ 1)

2
.

Nhận xét: (1) Trong trường hợp các siêu phẳng {Hi}1≤i≤q ở vị trí tổng quát,

tức là N = n, chúng tôi thấy rằng

� Định lý 4.1.1(a) chính là Định lý E (trong Chương I) của H. Fujimoto.

� Giả thiết của Định lý 4.1.1(b) được thỏa mãn với

q > n+ 1 +
2nq

q + 2n− 2
+ (lf + lg)ρ,

đặc biệt với q > 2n+ 2+ (lf + lg)ρ. Do vậy, kết quả này sẽ kéo theo các kết

quả duy nhất trước đây đối với trường hợp các ánh xạ phân hình từ Cm

vào Pn(C) của Z. Chen và Q. Yan (xem [15, Main Theorem]) và nhiều tác

giả khác.

(2) Nếu f và g là các ánh xạ không suy biến vi phân thì mf = mg = 1, lf = lg = n.

Do đó, trong trường hợp này, giả thiết của Định lý 4.1.1(a) được thỏa mãn với

q ≥ 2N − n+ 3 +
2n(2N − n+ 1)

n+ 1
ρ,

đặc biệt với q > n+ 3 + 2nρ nếu N = n. Vì vậy, kết quả của Định lý 4.1.1 sẽ kéo

theo kết quả trước đây cho trường hợp các ánh xạ phân hình khong suy biến vi

phân có chung ảnh ngược đối với các siêu phẳng của S. J. Drouilhet (xem [29]).

Chứng minh định lí 4.1.1. Không mất tính tổng quát, ta có thể giả sử rằng

M = B(R0) (0 < R0 ≤ +∞). Ta gọi α = (α0, . . . , αn) và β = (β0, . . . , βn) tương ứng

là các tập đa chỉ số chấp nhận được của f và g. Ký hiệu {ωi}1≤i≤q và ω̃ lần lượt

là các trọng Nochka và hằng số Nochka của họ {Hi}1≤i≤q.

56



Giả sử f̃ = (f0, . . . , fn) và g̃ = (g0, . . . , gn) là các biểu diễn rút gọn của f và

g tương ứng. Giả sử phản chứng rằng f ̸≡ g. Chúng tôi xét đồ thị đơn G có q

đỉnh {1, . . . , q}, trong đó hai đỉnh i và j kề nhau nếu và chỉ nếu
Hi(f̃)

Hi(g̃)
̸≡
Hj(f̃)

Hj(g̃)
.

Vì f ̸≡ g nên mỗi đỉnh phải kề ít nhất q − n đỉnh khác. Do đó, bậc của bất kỳ

đỉnh nào cũng ít nhất là q − n >
q

2
. Theo định lý Dirac, tồn tại một chu trình

Hamilton σ1, . . . , σq, σq+1 (σ1 = σq+1). Do đó, ta có
Hσi(f̃)

Hσi(g̃)
̸≡
Hσi+1(f̃)

Hσi+1(g̃)
(1 ≤ i ≤ q)

và vì vậy

Pi := Hσi(f̃)Hσi+1(g̃)−Hσi+1(f̃)Hσi(g̃) ̸≡ 0 (1 ≤ i ≤ q).

Chúng tôi đặt P =
q∏

i=1

Pi ̸≡ 0.

a) Ta chứng minh khẳng định đầu tiên của Định lý. Đặt D = H1 + · · · +Hq.

Hiển nhiên rằng

νP ≥ qν
[1]

D(f̃)
≥ q

mf
ν
[mf ]

D(f̃)
≥ q

mf

(
q∑

i=1

ωiνHi(f̃)
− νWα(f̃)

)
.

Tương tự, ta cũng có

νP ≥ q

mg

(
q∑

i=1

ωiνHi(g̃) − νWβ(g̃)

)
.

Chúng tôi xét hai trường hợp sau đây.

Trường hợp a.1: R0 = ∞ hoặc lim supr→R0

Tf (r) + Tg(r)

log(1/(R0 − r))
= ∞. Chúng tôi dễ

dàng có

∥ q(mf +mg)(Tf (r) + Tg(r)) ≥ (mf +mg)NP (r) +O(1)

≥
∑
h=f̃ ,g̃

q

(
q∑

i=1

ωiNHi(h)(r)−NW (h)(r)

)
+O(1)

≥ ω̃q(q − 2N + n− 1)(Tf (r) + Tg(r))

+ o(Tf (r)) + o(Tg(r)),

với W (h) = Wα(f̃) nếu h = f̃ và W (h) = Wβ(g̃) nếu h = g̃. Cho r → R0, ta thu

được mf +mg ≥ ω̃(q − 2N + n− 1), tức là,

q ≤ 2N − n+ 1 +
mf +mg

ω̃
≤ 2N − n+ 1 +

2N − n+ 1

n+ 1
(mf +mg).
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Đây là điều mâu thuẫn.

Trường hợp a.2: R0 < ∞ và lim supr→R0

Tf (r) + Tg(r)

log(1/(R0 − r))
< ∞. Ta có thể giả sử

rằng R0 = 1. Ta có

q∑
j=1

ωi(ν(f,Hj) + ν(g,Hj))− (νWα(f) + νWβ(g)) ≤
mf +mg

q
νP (z).

Đặt ϕ =
|zα0+···+αnWα(f̃)|

|H1(f̃)|ω1 ···|Hq(f̃)|ωq
và ψ =

|zβ0+···+βnWβ(g̃)|
|H1(g̃)|ω1 ···|Hq(g̃)|ωq . Khi đó v = log(ϕ·ψ|P |(mf+mg)/q)

là một hàm đa điều hòa dưới trên B(1). Nếu chúng tôi đặt t = ρ
ω̃(q−2N+n−1)−mf−mg

,

thì u = tv là đa điều hòa dưới trên B(1), và

t(lf + lg) <
ρ

ρ(lf + lg)
.(lg + lg) = 1,

với q > 2N − n + 1 +
mf +mg

ω̃
+
lf + lg

ω̃
ρ. Do đó, ta có thể chọn một số dương p

sao cho

0 < t(lf + lg) < p < 1.

Chúng tôi viết lại dạng metric Kähler đã cho là

ω =

√
−1

2π

∑
i,j

hij̄dzi ∧ dz̄j .

Từ giả thiết rằng cả f và g đều thỏa mãn điều kiện (Cρ), tồn tại các hàm đa điều

hòa dưới liên tục u1, u2 trên B(1) sao cho

eu1det(hij̄)
1
2 ≤ ∥f̃∥ρ,

eu2det(hij̄)
1
2 ≤ ∥g̃∥ρ.

Vì |P | ≤ ∥f̃∥ · ∥g̃∥ nên ta có

eu+u1+u2det(hij̄) = etv+u1+u2det(hij̄)

≤ etv∥f̃∥ρ∥g̃∥ρ = ϕtψt|P |t(mf+mg)/q∥f̃∥ρ∥g̃∥ρ

≤ Cϕtψt∥f̃∥tω̃(q−2N+n−1)∥g̃∥tω̃(q−2N+n−1),

với C là một hằng số dương. Lưu ý rằng dạng thể tích trên B(1) được cho bởi

dV := cmdet(hij̄)vm
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với cm là một hằng số dương. Do vậy ta có∫
B(1)

eu+u1+u2dV ≤ C

∫
B(1)

ϕtψt∥f̃∥tω̃(q−2N+n−1)∥g̃∥tω̃(q−2N+n−1)vm.

Do đó, sử dụng bất đẳng thức Hölder, ta có∫
B(1)

eu+u1+u2dV ≤ C
( ∫
B(1)

ϕtp1∥f̃∥tp1ω̃(q−2N+n−1)vm
) 1

p1×
( ∫
B(1)

ψtp2∥g̃∥tp2ω̃(q−2N+n−1)vm
) 1

p2

≤ C
(
2m

1∫
0

r2m−1
( ∫
S(r)

ϕtp1∥f̃∥tp1ω̃(q−2N+n−1)σm
)
dr
) 1

p1

×
(
2m

1∫
0

r2m−1
( ∫
S(r)

ψtp2∥g̃∥tp2ω̃(q−2N+n−1)σm
)
dr
) 1

p2 ,

trong đó p1 =
lf + lg

lf
và p2 =

lf + lg

lg
. Chúng tôi lưu ý rằng

∫
S(r)

ϕtp1∥f̃∥tp1ω̃(q−2N+n−1)σm =

∫
S(r)

(
|zα0+···+αnWα(f̃)|

H1(f̃)|ω1 · · · |Hq(f̃)|ωq

)tp1

×
(
∥f̃∥ω̃(q−2N+n−1)

)tp1
σm.

Mặt khác, với p thỏa mãn 0 < tp1lf = t(lf + lg) < p < 1 và với 0 < r0 < r < R < 1,

ta có∫
S(r)

(
|zα0+···+αnWα(f̃)|

|H1(f̃)|ω1 · · · |Hq(f̃)|ωq

)tp1(
∥f̃∥ω̃(q−2N+n−1)

)tp1
σm ≤ K1

(
R2m−1

R− r
Tf (R)

)p

.

Chọn R = r + 1−r
eTf (r)

, chúng tôi có Tf (R) ≤ 2Tf (R) với mọi r ∈ (0; 1) ngoài một

tập con E ⊂ [0, 1] sao cho
∫
E

1
1−rdr < +∞. Do đó, các bất đẳng thức trên cho ta

∫
S(r)

ϕtp1∥f̃∥tp1ω̃(q−2N+n−1)σm ≤ K ′

(1− r)p
(Tf (r))

p ≤ K ′

(1− r)p

(
log

1

1− r

)p
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(vì lim
r→R0

sup
Tf (r)+Tg(r)
log(1/(1−r))

<∞). Do đó, ta có

2m

1∫
0

r2m−1
( ∫
S(r)

ϕtp1∥f̃∥tp1ω̃(q−2N+n−1)σm
)
dr

≤ 2m

1∫
0

r2m−1 K ′

(1− r)p
(log

1

1− r
)pdr <∞.

Tương tự,

2m

1∫
0

r2m−1
( ∫
S(r)

ψtp2∥g̃∥tp2ω̃(q−2N+n−1)σm
)
dr

≤ 2m

1∫
0

r2m−1 K ′

(1− r)p
(log

1

1− r
)pdr <∞.

Do đó, chúng tôi thu được
∫

B(1)
eu+u1+u2dV <∞. Điều này mâu thuẫn với kết quả

của Yau [11] và Karp [36].

Vậy giả sử phản chứng không đúng. Do đó, chúng tôi phải có f ≡ g và Khẳng

định a) được chứng minh.

b) Với giả thiết bổ sung của Khẳng định b), ta thấy rằng

νP ≥
q∑

i=1

(min{νHσ(i)(f̃)
, νHσ(i)(g̃)}+min{νHσ(i+1)(f̃)

, νHσ(i+1)(g̃)}) +
∑

j ̸=σ(i),σ(i+1)

ν
[1]

Hj(f̃)

≥ 2

q∑
i=1

(ν
[n]

Hi(f̃)
+ ν

[n]
Hi(g̃)

− nν
[1]

Hi(f̃)
) + (q − 2)

q∑
i=1

ν
[1]

Hi(f̃)

= 2

q∑
i=1

(ν
[n]

Hi(f̃)
+ ν

[n]
Hi(g̃)

) + (q − 2n− 2)

q∑
i=1

ν
[1]

Hi(f̃)

≤ q + 2n− 2

2n

q∑
i=1

(ν
[n]

Hi(f̃)
+ ν

[n]
Hi(g̃)

)

≤ q + 2n− 2

2nω̃

q∑
i=1

ωi(ν
[n]
(f,Hi)

+ ν
[n]
Hi(g̃)

)

≤ q + 2n− 2

2nω̃

(
q∑

i=1

ωiνHi(f̃)
− νWα(f̃)

+

q∑
i=1

ωiνHi(g̃) − νWβ(g̃)

)
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Ta xét hai trường hợp sau.

Trường hợp b.1: R0 = ∞ hoặc lim supr→R0

Tf (r) + Tg(r)

log(1/(R0 − r))
= ∞. Chúng tôi dễ

dàng có

∥ q(Tf (r) + Tg(r)) ≥ 2NP (r) +O(1)

≥ q + 2n− 2

2n

q∑
i=1

(N
[n]

Hi(f̃)
(r) +N

[n]
Hi(g̃)

(r)) +O(r)

≥ q + 2n− 2

2n

∑
h=f,g

(q − 2N + n− 1)(Tf (r) + Tg(r))

+ o(Tf (r)) + o(Tg(r)).

Cho r → R0, ta thu được q ≥ q + 2n− 2

n
(q − 2N + n− 1), nghĩa là,

q ≤ 2N − n+ 1 +
2nq

q + 2n− 2
.

Điều này dẫn đến mâu thuẫn.

Trường hợp b.2: R0 < ∞ và lim supr→R0

Tf (r) + Tg(r)

log(1/(R0 − r))
< ∞. Ta có thể giả

sử rằng R0 = 1. Ta định nghĩa ϕ và ψ như trong phần a). Khi đó v′ = log(ϕ ·
ψ|P |(2nqω̃)/(q+2n−2)) là một hàm đa điều hòa dưới trên B(1). Nếu chúng tôi đặt

t′ =
ρ

ω̃

(
q − 2N + n− 1− 2nq

q + 2n− 2

) thì u′ = t′v′ là một hàm đa điều hòa dưới

trên B(1), và
t′(lf + lg) <

ρ

ρ(lf + lg)
.(lg + lg) = 1,

với q > 2N − n + 1 +
2nq

q + 2n− 2
+
lf + lg

ω̃
ρ. Vì vậy, chúng tôi có thể chọn một số

dương p′ sao cho

0 < t′(lf + lg) < p′ < 1.

Vì |P | ≤ ∥f̃∥ · ∥g̃∥, ta có

eu
′+u1+u2det(hij̄) = et

′v′+u1+u2det(hij̄)

≤ et
′v′∥f̃∥ρ∥g̃∥ρ = ϕtψt|P |t

′(2nqω̃)/(q+2n−2)∥f̃∥ρ∥g̃∥ρ

≤ C ′ϕtψt∥f̃∥t
′ω̃(q−2N+n−1)∥g̃∥t

′ω̃(q−2N+n−1),

với C ′ là một hằng số dương. Lặp lại lập luận tương tự như trong phần a) khi

t, u, v, p được thay bằng t′, u′, v′, p′, chúng tôi cũng lại thu được mâu thuẫn. Do

đó, chúng tôi phải có f ≡ g. Điều khẳng định b) được chứng minh.
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4.2 Ánh xạ phân hình không suy biến vi phân chia

sẻ yếu một họ siêu phẳng.

Trong phần này, chúng tôi sẽ xét trường hợp hai ánh xạ phân hình không suy

biến vi phân chia sẻ yếu một họ các siêu phẳng ở vị trí tổng quát. Ở đây, ta nói

hai ánh xạ phân hình f và g chia sẻ yếu một siêu phẳng H nếu f−1(H) ⊂ g−1(H)

và f = g trên f−1(H). Cụ thể, chúng tôi chứng minh định lý sau.

Định lý 4.2.1. Cho M là một đa tạp Kähler đầy có phủ phổ dụng song chỉnh

hình với B(R0) ⊂ Cm (0 < R0 ≤ +∞). Giả sử f, g : M → Pn(C) là các ánh xạ

phân hình không suy biến vi phân, thỏa mãn điều kiện (Cρ) với một số ρ ≥ 0.

Cho H1, . . . , Hq là q siêu phẳng của Pn(C) ở vị trí tổng quát và cho số nguyên p

với n+ 2 ≤ p ≤ n+ 3 < q. Giả sử rằng:

(1) f−1(Hi) = g−1(Hi) với mọi 1 ≤ i ≤ p, f−1(Hi) ⊂ g−1(Hi) với mọi p+1 ≤ i ≤ q,

(2) f = g trên
⋃q

i=1 f
−1(Hi).

Khi đó f ≡ g nếu một trong các điều kiện sau được thỏa mãn:

(a) p = n+ 2 và q > 2n+ 5 + 4nρ.

(b) p = n+ 3 và q > n+ 3 + 2nρ.

Chúng ta nhắc lại rằng, một ánh xạ phân hình f đi từ đa tạp phức m chiều

M vào một đa tạp phức N được nói là không suy biến vi phân nếu tồn tại một

điểm z sao cho ma trận Jacobi của f tại điểm z có hạng bằng m. Để chứng minh

định lý trên, ta cần một số bổ đề chuẩn bị. Trước tiên, ta có bổ đề sau về divisor

sinh bởi tích các ánh xạ ở vị trí đặc biệt được cho bởi W. Stoll.

Bổ đề 4.2.2 (xem [39, Theorem 2.1, p. 320]). Giả sử A là một tập con giải tích

của Bm(R0) (0 < R0 ≤ +∞) có chiều thuần túy là (m − 1). Gọi ℓ và k là các số

nguyên với 1 ≤ ℓ ≤ k ≤ n+ 1. Gọi fj : Bm(R0) → Pn(C), 1 ≤ j ≤ k, là các ánh xạ

phân hình. Giả sử rằng fi1 ∧ · · · ∧ fiℓ = 0 trên A với mọi 1 ≤ i1 < · · · < iℓ ≤ k.

Kho đó ta có νf1∧···∧fk(z) ≥ k − ℓ+ 1 cho mọi z ∈ A.

Chúng tôi chứng minh bổ đề sau về divisor của Wronskian tổng quát của ánh

xạ phân hình không suy biến vi phân.
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Bổ đề 4.2.3. Cho f là một ánh xạ phân hình không suy biến vi phân từ hình cầu

Bm(R0) trong Cm vào Pn(C) (m ≥ n) với một biểu diễn rút gọn f̃ = (f0, . . . , fn).

Giả sử H0, . . . , Hq là q + 1 (q ≥ n + 1) siêu phẳng của Pn(C) ở vị trí tổng quát.

Gọi α = (α0, . . . , αn) ∈ (Nm)n+1 với |α0| = 0, |αi| = 1 (1 ≤ i ≤ n) sao cho

W := det(Dαifj ; 0 ≤ i, j ≤ n) ̸≡ 0. Khi đó, ta có

q∑
i=0

νHi(f̃)
− νW ≤ ν

[1]∏q
i=0 Hi(f)

.

Chứng minh. Xét một điểm a cố định là điểm chính quy của tập giải tích

Suppν∏q
i=0 Hi(f̃)

và không thuộc tập không xác định của ánh xạ f . Vì {Hi}qi=0

ở vị trí tổng quát nên a là không điểm của nhiều nhất n hàm Hi(f̃). Ta có thể

giả sử rằng

νH0(f̃)
(a) ≥ · · · ≥ νHℓ(f̃)

(a) ≥ 0 = νHℓ+1(f̃)
(z0) = · · · = νHq(f̃)

(a) (ℓ ≤ n− 1).

Chúng tôi lưu ý rằng W = C det(DαiHj(f̃))0≤i,j≤n với một hằng số khác không

C. Ngoài ra, ta có thể giả sử rằng

α1 = (1, 0, 0, . . . , 0), α2 = (0, 1, 0, . . . , 0), . . . , αn = (0, 0, . . . , 0,
n−th
1 , 0 . . . , 0).

Chọn một hệ tọa độ affine địa phương (U, x) quanh a, trong đó U là một lân cận

của a trong Bm(R0), x = (x1, . . . , xm), x(a) = (0, . . . , 0) sao cho Suppν∏q
i=0 Hi(f̃)

∩U =

{x1 = 0} ∩ U .
Bằng cách thu nhỏ U nếu cần, chúng tôi có thể giả sử rằng

Suppν∏q
i=0 Hi(f̃)

∩ U = {Hi(f̃) = 0} ∩ U (0 ≤ i ≤ ℓ)

và Hj(f̃) (ℓ+ 1 ≤ j ≤ q) không triệt tiêu trên U . Do đó, Hi(f̃) = xti1 gj (0 ≤ i ≤ ℓ)

với một hàm chỉnh hình gj sao cho gj(a) ̸= 0. Vì vậy,

Dαi

(
Hj(f̃)

Hn(f̃)

)
=

∂

∂zi

(
Hj(f̃)

Hn(f̃)

)
=

m∑
s=1

∂xs
∂zi

· ∂

∂xs

(
Hj(f̃)

Hn(f̃)

)
(0 ≤ j ≤ n− 1)

và

ν
∂

∂xs

(
Hj(f̃)

Hn(f̃)

)(a) ≥
tj − 1 if s = 1

tj if s > 1,
∀1 ≤ j ≤ ℓ.
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Mặt khác, chúng tôi có

W = CHn(f̃)
n+1 det

(
∂

∂zi

(
Hj(f̃)

Hn(f̃)

))
i≤i≤n,0≤j≤n−1

.

Điều này kéo theo

νW (a) ≥ min

{
ν
det

(
∂

∂xis

(
Hj(f̃)

Hn(f̃)

)
;0≤j,s≤n−1

)(a); 1 ≤ i0 < · · · < in−1 ≤ m

}

≥ min

n−1∑
j=0

ν
∂

∂xij

(
Hj(f̃)

Hn(f̃)

)(a)
≥ t1 + · · ·+ tℓ − 1 =

q∑
i=0

νHi(f̃)
(a)− ν

[1]∏q
i=0 Hi(f̃)

(a).

Vì vậy, chúng tôi có

q∑
i=0

νHi(f̃)
(a)− ν

[1]∏n
i=0 Hi(f̃)

(a) ≥ νW (a).

Bổ đề đã được chứng minh.

Bổ đề tiếp theo được chúng tôi đưa ra có thể xem như là một dạng tổng quát

cho định lý duy nhất của các ánh xạ phân hình trên đa tạp Kähler đầy. Bổ đề

này đóng vai trò then chốt trong các chứng minh về sau của chúng tôi.

Bổ đề 4.2.4. Cho đa tạp Kähler đầy M = Bm(R0) (0 < R0 ≤ +∞). Cho k là

một số nguyên dương và với mỗi u ∈ {1, . . . , k}, cho fu là một ánh xạ phân hình

không suy biến vi phân từ M vào Pn(C), thỏa mãn điều kiện (Cρ) và có một biểu

diễn rút gọn f̃u = (fu0 , . . . , f
u
n ). Gọi {Hu

1 , . . . , H
u
qu} (1 ≤ u ≤ k) là k họ các siêu

phẳng của Pn(C) ở vị trí tổng quát, trong đó q1, . . . , qk là các số nguyên dương.

Giả sử rằng tồn tại một hàm chỉnh hình không đồng nhất bằng không h trên

B(R0) sao cho:

(a) |h| ≤ C∥f̃1∥p1 · · · ∥f̃k∥pk, với C là một hằng số dương,

(b) νh ≥
∑k

u=1 λuν
[1]∏qu

i=1 H
u
i (f̃

u)
, trong đó λu(1 ≤ u ≤ k) là các hằng số dương.

Khi đó tồn tại một chỉ số u sao cho λu(qu − n− 1)− pu ≤ 0, hoặc

k∑
u=1

(λu(qu − n− 1)− pu) ≤ 2nρ

k∑
u=1

λu.
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Chứng minh. Giả sử phản chứng rằng λu(qu−n− 1)− pu > 0 với mọi u = 1, . . . , k

và
k∑

u=1

(λu(qu − n− 1)− pu) > 2nρ

k∑
u=1

λu.

Trường hợp 1: R0 = +∞. Theo định lý cơ bản thứ hai trong lý thuyết Nevan-

linna, chúng ta có

k∑
u=1

λu(qu − n− 1)Tfu(r) ≤
k∑

u=1

λuN
[1]∏qu

i=1 H
u
i (f̃

u)
(r, 1) + o(

k∑
u=1

Tfu(r))

≤ Nh(r) + o(

k∑
u=1

Tfu(r))

=

k∑
u=1

puTfu(r) + o(

k∑
u=1

Tfu(r)),

với mọi r ∈ (1,+∞) ngoài một tập con có độ đo Lebesgue hữu hạn. Đây là điều

mâu thuẫn.

Trường hợp 2: R0 < +∞. Giả sử rằng R0 = 1. Trong trường hợp này, ta

giả sử ρ > 0. Đối với mỗi u (1 ≤ u ≤ k), chọn (αu
0 , . . . , α

u
n) ∈ (Nm)n+1 với

|αu
0 | = 0, |αu

i | = 1 (1 ≤ u ≤ n) sao cho

W (f̃u) := det
(
Dαu

i (fuj ); 0 ≤ i, j ≤ n
)
̸≡ 0.

Theo Bổ đề 4.2.3, ta có

νh ≥
k∑

u=1

λuν
[1]∏qu

i=1 H
u
i (f̃

u)
≥

k∑
u=1

λu

(
qu∑
i=1

νHu
i (f̃

u) − νW (f̃u)

)
.

Chúng tôi đặt:

wu(z) := zα
u
0+···+αu

n
W (f̃u)∏qu
i=1H

u
i (f̃

u)
∀1 ≤ u ≤ k,

t :=
2ρ∑k

u=1(λu(qu − n− 1)− pu)
> 0

và ϕ := |w1|λ1 · · · |wk|λk · |h|.

Khi đó, a = tlogϕ là một hàm đa điều hòa dưới trên Bm(R0) và

(

k∑
u=1

λu)nt < 1.
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Do đó, chúng tôi có thể chọn một số dương p sao cho 0 < (
∑k

u=1 λu)nt < p < 1.

Vì fu thỏa mãn điều kiện (Cρ), nên tồn tại một hàm đa điều hòa dưới liên

tục φu trên Bm(R0) sao cho

eφudV ≤ ∥f̃u∥2ρvm.

Khi đó, hàm φ = λ′1φ1+ · · ·+λ′kφk+a là một hàm đa điều hòa dưới trên Bm(R0),

trong đó λ′u =
(λu(qu−n−1)−pu)t

2ρ . Ta có
∑k

u=1 λ
′
u = 1 và do đó

eφdV = eλ
′
1φ1+···+λ′

kφk+tlogϕdV

≤ C ′ · etlogϕ ·
k∏

u=1

∥f̃u∥2λ
′
uρvm

= C ′ · |ϕ|t ·
k∏

u=1

∥f̃u∥2λ
′
uρvm = C ′′ ·

k∏
u=1

(|wu|λut∥f̃u∥2λ
′
uρ+put)vm

= C ′′ ·
k∏

u=1

(|wu| · ∥f̃u∥(qu−n−1))tλuvm,

trong đó C ′, C ′′ là các hằng số dương.

Đặt xu =
∑k

i=1 λi

λu
. Khi đó

∑k
u=1

1
xu

= 1. Lấy tích phân trên Bm(1) hai vế của

bất đẳng thức trên và áp dụng bất đẳng thức Hölder, ta được∫
Bm(1)

eφdV ≤ C ′′
k∏

u=1

(∫
Bm(1)

(|wu| · ∥fu∥(qu−n−1))λutxuvm

)1/xu

= C ′′
k∏

u=1

(
2m

∫ 1

0

r2m−1

∫
∥z∥=r

(|wu| · ∥fu∥(qu−n−1))λutxuvm

)1/xu

.

(4.1)

Ta xét hai trường hợp nhỏ sau.

Trường hợp 2.a: Giả sử rằng

lim
r→1

sup

∑k
u=1 Tfu(r)

log1/(1− r)
<∞.

Ta nhận thấy rằng λutxun = (
∑k

i=1 λi)nt < p. Theo Mệnh đề 2.2.3, tồn tại một

hằng số dương K sao cho, với mọi 0 < r0 < r < R < 1, ta có∫
∥z∥=r

(
|wu| · ∥f̃u∥(qu−n−1)

)λuxut
σm ≤ K

(
R2m−1

R− r
Tfu(R)

)p

(1 ≤ u ≤ k).
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Chọn R = r +
1− r

emax1≤u≤k Tfu(r)
, ta có Tfu(R) ≤ 2Tfu(r), với mọi r nằm ngoài

một tập con E của (0, 1] sao cho
∫
E

1
1−rdr < +∞. Khi đó, bất đẳng thức trên suy

ra rằng∫
∥z∥=r

(
|wu| · ∥f̃u∥(qu−n−1)

)λutxu
σm ≤ K ′

(1− r)p

(
log

1

1− r

)2p
(1 ≤ u ≤ k),

với mọi r nằm ngoài E, và với một hằng số dương K ′. Bất đẳng thức (4.1) cho

thấy rằng ∫
Bm(1)

eφdV ≤ C ′′2m

∫ 1

0

r2m−1 K ′

1− r

(
log

1

1− r

)2p
dr < +∞.

Điều này mâu thuẫn với kết quả của S.T. Yau [35] và L. Karp [36].

Trường hợp 2.b: Giả sử rằng

lim
r→1

sup

∑k
u=1 Tfu(r)

log1/(1− r)
= ∞.

Theo Định lý cơ bản thứ hai cho ánh xạ không suy biến vi phân (xem [8,

Proposition 6.2]), ta có

k∑
u=1

puTfu(r) ≥ Nh(r) + S(r) ≥
k∑

u=1

λuN
[1]∏q

i=1 H
u
i (f̃

u)
(r) + S(r)

≥
k∑

u=1

λu(qu − n− 1)Tfu(r) +O
(
log+

1

1− r
+ log+

k∑
u=1

Tfu(r)
)
,

với mọi r ∈ (0; 1) ngoài một tập đo được Lebesgue E với
∫
E

dr
1−r < +∞. Điều này

dẫn đến mâu thuẫn.

Do đó, giả sử phản chứng là sai. Vậy bổ đề được chứng minh.

Chứng minh định lí 4.2.1. Bằng cách sử dụng phủ phổ dụng nếu cần, không

mất tính tổng quát, ta giả sử rằng M = B(R0) ⊂ Cm. Giả sử f có biểu diễn rút

gọn f̃ = (f0, . . . , fn) và g có biểu diễn rút gọn g̃ = (g0, . . . , gn). Giả sử phản chứng

f ̸≡ g. Khi đó tồn tại các chỉ số i, j sao cho

P := figj − fjgi ̸≡ 0.

(a) Với λ > 1 là một số hữu tỷ tùy ý. Vì f = g trên
⋃q

i=1 f
−1(Hi) nên ta có

νP ≥ ν
[1]∏q

i=1 Hj(f̃)
= (ν

[1]∏q
i=1 Hj(f̃)

− λν
[1]∏p

i=1 Hj(f̃)
) + λν

[1]∏n+3
i=1 Hj(g̃)

.
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Lấy một số nguyên dương k sao cho kλ là một số nguyên và xét hàm chỉnh hình

P̃ = P k ·
∏p

j=1Hj(f̃)
kλ. Hiển nhiên, ta có

νP̃ ≥ kν
[1]∏q

j=1 Hj(f̃)
+ kλν

[1]∏n+3
j=1 Hj(g̃)

và |P̃ | ≤ C∥f̃∥1+(n+2)λ)k∥g̃∥k với một hằng số dương C. Áp dụng Bổ đề 4.2.4 cho

hàm P̃ , ta có một trong các trường hợp sau xẩy ra:

� (q − n− 1) ≤ 1 + (n+ 2)λ,

� (q − n− 1)− (1 + (n+ 2)λ) + λ(n+ 2− n− 1)− 1 ≤ 2nρ(1 + λ).

Cho λ→ 1, ta có q ≤ 2n+ 5 + 4nρ. Đây là điều mâu thuẫn.

(b) Chọn β ∈ (12 , 1) là một số hữu tỷ tùy ý. Tương tự như trên, ta có

νP ≥ ν
[1]∏q

i=1 Hj(f̃)
≥ (1− β)ν

[1]∏q
i=1 Hj(f̃)

+ βν
[1]∏n+2

i=1 Hj(g̃)
.

Lấy một số nguyên dương ℓ sao cho ℓβ là một số nguyên và xét hàm chỉnh hình

P ℓ. Ta có

νP ℓ ≥ ℓ(1− β)ν
[1]∏q

j=1 Hj(f̃)
+ ℓβν

[1]∏n+2
j=1 Hj(g̃)

và |P ℓ| ≤ C ′∥f̃∥ℓ∥g̃∥ℓ với một hằng số dương C ′. Theo Bổ đề 4.2.4, một trong các

trường hợp sau đây phải xảy ra:

� (1− β)(q − n− 1) ≤ 1,

� (1− β)(q − n− 1)− 1 + (2β − 1) ≤ 2ρ(n(1− β) + nβ).

Cho β → 1/2, ta có q ≤ n+ 3 + 2nρ. Đây là điều mâu thuẫn.

Do đó giả sử phản chứng là sai. Suy ra ta phải có f ≡ g. Vậy định lý được

chứng minh.

Dựa vào Bổ đề 4.2.4, chúng tôi đưa ra một định lý phụ thuộc đại số cho các

ánh xạ phân hình không suy biến vi phân trên các đa tạp Kähler có chung ảnh

ngược một số siêu phẳng như sau.

Định lý 4.2.5. Cho M như trong Định lý 4.2.1. Giả sử f1, . . . , fk :M → Pn(C)

là k ánh xạ phân hình không suy biến vi phân, thỏa mãn điều kiện (Cρ). Cho ℓ,

p, q là các số nguyên dương với n + 2 ≤ p ≤ q và 2 ≤ ℓ ≤ k và cho H1, . . . , Hq là

q siêu phẳng của Pn(C) ở vị trí tổng quát. Giả sử rằng:
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(1) (fu)−1(Hi) = (f1)−1(Hi) với mọi 1 ≤ i ≤ p và 2 ≤ u ≤ k,

(2) f i1 ∧ · · · ∧ f iℓ = 0 trên
⋃

1≤i≤q(f
1)−1(Hi) với mọi 1 ≤ i1 < · · · < iℓ ≤ k.

Khi đó f1∧· · ·∧fk ≡ 0 nếu q > n+1+ 1
k−ℓ+1

(
1 +

p(k−1)
p−n−1

)
+2nρ

(
1 +

(k−1)
(k−ℓ+1)(p−n−1)

)
.

Chứng minh định lí 4.2.5. Giả sử rằng f̃u = (fu0 , . . . , f
u
n ) là một biểu diễn rút

gọn của f̃u với mọi 1 ≤ u ≤ k. Giả sử phản chứng rằng f1 ∧ f2 ∧ · · · ∧ fk ̸≡ 0. Khi

đó tồn tại 0 ≤ i1 < · · · < ik ≤ n sao cho

P = det(fuij)1≤u,j≤k ̸≡ 0.

Đối với mỗi điểm chính quy z của tập giải tích
⋃q

i=1(f
1)−1(Hi) và không nằm

trong tập các điểm không xác định của fu (1 ≤ u ≤ k), ta có f i1(z)∧· · ·∧f iℓ(z) = 0

với mọi 1 ≤ i1 < · · · < iℓ ≤ k. Do đó, theo Bổ đề 4.2.2, z là một không điểm của

P với bội ít nhất là k − ℓ+ 1. Vì vậy, ta có

νP ≥ (k − ℓ+ 1)ν
[1]∏q

i=1 Hj(f1)

= (k − ℓ+ 1)ν
[1]∏q

i=1 Hj(f1)
− (k − 1)λν

[1]∏p
i=1 Hj(f1)

+ λ

k∑
u=2

ν
[1]∏p

i=1 Hj(f1)
,

với mọi số hữu tỷ dương λ > 1
p−n−1 . Gọi K là một số nguyên dương sao cho

Kλ ∈ Z. Ta xét hàm chỉnh hình G = PK
∏p

i=1Hj(f̃
1)K(k−1)λ. Hiển nhiên, ta có

νG ≥ K(k − ℓ+ 1)ν
[1]∏q

i=1 Hj(f̃1)
+Kλ

k∑
u=2

ν
[1]∏p

i=1 Hj(f̃1)

và |G| ≤ C∥f̃1∥K+pK(k−1)λ∥f̃2∥K · · · ∥fk∥K với một hằng số dương C. Theo Bổ đề

4.2.4, một trong các trường hợp sau đây phải xảy ra:

� (k − ℓ+ 1)(q − n− 1) ≤ 1 + p(k − 1)λ,

� (k−ℓ+1)(q−n−1)−1−p(k−1)λ+(k−1)(λ(p−n−1)−1) ≤ 2nρ(k−ℓ+1+(k−1)λ).

Cho λ→ 1/(p− n− 1), ta thu được

q ≤ n+ 1 +
1

k − ℓ+ 1

(
1 +

p(k − 1)

p− n− 1

)
+ 2nρ

(
1 +

k − 1

(k − ℓ+ 1)(p− n− 1)

)
.

Đây là điều mâu thuẫn.

Do đó giả sử phản chứng ta sai, hay ta phải có f1 ∧ f2 ∧ · · · ∧ fk ≡ 0. Vậy

định lý được chứng minh.
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4.3 Các ánh xạ phân hình chung ảnh ngược của các

họ siêu phẳng khác nhau.

Trong phần cuối này, chúng tôi sẽ chứng minh định lý duy nhất cho các ánh xạ

phân hình trên đa tạp Kähler có chung ảnh ngược đối với các họ các siêu phẳng

khác nhau ở vị trí dưới tổng quát. Chúng tôi chứng minh định lý sau.

Định lý 4.3.1. Cho M là một đa tạp Kähler đầy có phủ phổ dụng song chỉnh

hình với hình cầu B(R0) ⊂ Cm (0 < R0 ≤ ∞). Cho f, g : M → Pn(C) là các ánh

xạ phân hình không suy biến tuyến tính thoả mãn điều kiện (Cρ) với một hằng

số không âm ρ. Cho {Hj}qj=1 và {Lj}qj=1 (q ≥ 2n+ 2) là hai họ các siêu phẳng ở

vị trí tổng quát và cho l1, . . . , lq là các số nguyên dương (có thể là +∞). Giả sử

rằng q > n+ 1 + ρn(n+ 1) + 2nq
q+2n−2 +

∑q
j=1

n
lj+1 và

a) min{1, νHj(f),≤lj} = min{1, νLj(g),≤lj} với mọi 1 ≤ j ≤ q,

b) dim sup νHi(f),≤li ∩ sup νHj(f),≤lj ≤ m− 2 với mọi 1 ≤ i < j ≤ q,

c) Hi(f)
Hj(f)

=
Li(g)
Lj(g)

trên
⋃q

s=1 sup νHs(f),≤ls \ (sup νHj(f)∪ sup νLj(f)) với mọi 1 ≤ i <

j ≤ q.

Khi đó tồn tại một phép biến đổi xạ ảnh L từ Pn(C) vào chính nó sao cho

L(g) ≡ f và siêu phẳng xác định bởi Hj là ảnh của siêu phẳng xác định bởi Lj

qua ánh xạ L với mọi j ∈ {1, . . . , q}.

Trong Định lý 4.3.1, nếu chúng tôi giả sử thêm rằng có n + 1 siêu phẳng

Hij (1 ≤ j ≤ n + 1) sao cho Hij ≡ Lij , thì phép biến đổi xạ ảnh L phải là phép

biến đổi đồng nhất, và do đó f ≡ g, Hj ≡ Lj với mọi j = 1, . . . , q. Vì vậy, chúng

tôi có hệ quả sau về tính duy nhất của các ánh xạ phân hình không suy biến

tuyến tính từ các đa tạp Kähler vào Pn(C) chia sẻ các siêu phẳng.

Hệ quả 4.3.2. Cho M là một đa tạp Kähler đầy có phủ phổ dụng song chỉnh

hình với B(R0) ⊂ Cm (0 < R0 ≤ ∞). Cho f, g : M → Pn(C) là các ánh xạ phân

hình không suy biến tuyến tính thoả mãn điều kiện (Cρ) với một hằng số không

âm ρ. Gọi {Hj}qj=1 và {Lj}qj=1 (q ≥ 2n+2) là hai họ các siêu phẳng của Pn(C) ở

vị trí tổng quát sao cho Hj ≡ Lj với mọi j ∈ {1, . . . , n + 1}. Cho l1, . . . , lq là các

số nguyên dương (có thể là +∞). Giả sử rằng
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a) min{1, νHj(f),≤lj} = min{1, νLj(g),≤lj} với mọi 1 ≤ j ≤ q,

b) dim sup νHi(f),≤li ∩ sup νHj(f),≤lj ≤ m− 2 với mọi 1 ≤ i < j ≤ q,

c) Hi(f)
Hj(f)

=
Li(g)
Lj(g)

trên
⋃q

i=1 sup νHi(f),≤li \ (sup νHj(f) ∪ sup νLj(f)) với mọi 1 ≤
i < j ≤ q.

Nếu q > n + 1 + ρn(n + 1) + 2nq
q+2n−2 +

∑q
j=1

n
lj+1 thì f ≡ g và Hj ≡ Lj với mọi

j ∈ {1, . . . , q}..

Nhận xét.

1) Nếu l1 = · · · = lq = +∞, thì kết luận của hệ quả đúng với mọi q sao cho

q > n+ 1 + ρn(n+ 1) +
2nq

q + 2n− 2
.

2) Nếu M = Cm, thì ta có thể chọn ρ = 0 và kết luận của hệ quả đúng với q

thỏa mãn

q > n+ 1 +
2nq

q + 2n− 2
+

q∑
j=1

n

lj + 1
.

Bất đẳng thức trên đúng với q = 2n+ 3 và lj (1 ≤ j ≤ 2n+ 3) thỏa mãn

q∑
j=1

1

lj + 1
<
n2 + 5n+ 2

5n2 + n
.

Vì vậy, hệ quả trên cũng tổng quát hóa và cải tiến tất cả các kết quả trước đó

về tính duy nhất của các ánh xạ phân hình chia sẻ 2n+ 3 siêu phẳng của Pn(C)

ở vị trí tổng quát.

Để chứng minh Định lý 4.3.1, chúng tôi trước tiên nhắc lại một số khái niệm

sau.

Cho f1, f2, . . . , fk là k ánh xạ phân hình từ Bm(R0) vào Pn(C) với các biểu

diễn rút gọn f̃u = (f̃u0 , . . . , f
u
n ) (u = 1, . . . , k). Ta gọi C(Bm(R0)) là tập tất cả các

hàm số không âm g : Bm(R0) → [0,+∞] liên tục ngoài một tập giải tích có đối

chiều hai (tương ứng với tôpô compact hóa [0,+∞]) và chỉ đạt giá trị +∞ trong

một tập con giải tích thực sự.

Với mỗi số nguyên không âm l0, ta kí hiệu S(l0; f
1, . . . , fk) là tập các hàm

số g trong C(Bm(R0)) sao cho tồn tại một phần tử α = (α1, . . . , αm) ∈ Nm với

|α| :=
∑m

j=1 αj ≤ l0, một số dương K thỏa mãn: với mọi 0 ≤ tl0 < p < 1 ta có∫
S(r)

|zαg|tσm ≤ K

(
R2m−1

R− r

k∑
u=1

Tfu(R)

)p
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với mọi r sao cho 0 < r0 < r < R < R0, ở đó zα = zα1

1 · · · zαm
m .

Cho p là một số nguyên không âm. Ta kí hiệu B(p, l0; f
1, . . . , fk) là tập tất cả

các hàm phân hình h trên Bm(R0) sao cho tồn tại g ∈ S(l0; f
1, . . . , fk) thỏa mãn

|h| ≤ ∥f1∥p · · · ∥fu∥p · g,

ngoài một tập con giải tích thực sự của Bm(R0).

Theo [25], ta có các khẳng định sau:

� Nếu g là hàm hằng g ∈ S(0; f1, . . . , fk).

� Nếu gi ∈ S(li; f
1, . . . , fk) (1 ≤ i ≤ s) thì

∏s
i=1 gi ∈ S(

∑s
i=1 li; f

1, . . . , fk).

� Với mỗi hàm phân hình h, ta có |h| ∈ S(l0; f
1, . . . , fk) nếu và chỉ nếu h ∈

B(0, l0; f
1, . . . , fk).

� Nếu hi ∈ B(pi, li; f
1, . . . , fk) (1 ≤ i ≤ s) thì

h1 · · ·hm ∈ B(

s∑
i=1

pi,

s∑
i=1

li; f
1, . . . , fk).

Ta chứng minh mệnh đề sau:

Mệnh đề 4.3.3. Cho đa tạp Kähler đầy M = Bm(R0) (0 < R0 ≤ +∞). Cho

f1, . . . , fk là k ánh xạ phân hình không suy biến tuyến tính từ M vào Pn(C) với

các biểu diễn rút gọn f̃u = (fu0 , · · · , fun ) (1 ≤ u ≤ k), thỏa mãn điều kiện (Cρ).
Cho {Hu

1 , . . . , H
u
q } (1 ≤ u ≤ k) là k họ siêu phẳng trong Pn(C) ở vị trí tổng quát,

trong đó q là một số nguyên dương. Giả sử tồn tại một hàm chỉnh hình không

đồng nhất bằng không h ∈ B(p, l0; f
1, . . . , fk) sao cho

νh ≥ λ

k∑
u=1

q∑
i=1

ν
[n]
Hu

i (f
u)
,

trong đó p, l0 là các số nguyên không âm, và λ là một số dương. Khi đó, chúng

tôi có

q ≤ n+ 1 + ρk
n(n+ 1)

2
+

1

λ
(p+ ρl0) .

Chứng minh. Chúng tôi xét hai trường hợp sau:
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Trường hợp 1: R0 = +∞. Theo định lý cơ bản thứ hai trong lý thuyết

Nevanlinna, chúng ta có

(q − n− 1)

k∑
u=1

Tfu(r, 1) ≤
k∑

u=1

q∑
i=1

N
[n]

Hu
i (f̃

u)
(r, 1) + o(

k∑
u=1

Tfu(r))

≤ 1

λ
Nh(r) + o(

k∑
u=1

Tfu(r))

=
p

λ

k∑
u=1

Tfu(r) + o(

k∑
u=1

Tfu(r)),

với mọi r ∈ (1,+∞) ngoài một tập có độ đo Lebesgue hữu hạn. Cho r → +∞, ta

có

q ≤ n+ 1 +
p

λ
.

Trường hợp 2: R0 < +∞. Ta có thể giả sử rằng R0 = 1. Giả sử phản chứng

q > n+ 1 + ρk
n(n+ 1)

2
+

1

λ
(p+ ρl0) .

Khi đó, tồn tại một ϵ > 0 sao cho

q > n+ 1 + ρk
n(n+ 1)

2
+

1

λ
(p+ ρ(l0 + ϵ)) .

Đặt l′0 = l0 + ϵ > l0.

Đối với mỗi u (1 ≤ u ≤ k), vì fu là không suy biến tuyến tính nên tồn tại một

tập đa chỉ số chấp nhận được (αu
0 , . . . , α

u
n) ∈ (Nm)n+1 với |αu

i | ≤ i (0 ≤ i ≤ n) sao

cho

W (f̃u) := det
(
Dαu

i (fuj ); 0 ≤ i, j ≤ n
)
̸≡ 0.

Theo lập luận thường dùng trong lý thuyết Nevanlinna, ta có

νh ≥ λ

k∑
u=1

q∑
i=1

ν
[n]

Hu
i (f̃

u)
≥ λ

k∑
u=1

(
q∑

i=1

νHu
i (f̃

u) − νW (f̃u)

)
.

Đặt wu(z) := zα
u
0+···+αu

n
W (f̃u)∏q
i=1H

u
i (f̃

u)
(1 ≤ u ≤ k). Vì h ∈ B(p, l0; f

1, . . . , fk) nên

tồn tại một hàm g ∈ S(l0; f
1, . . . , fk) và β = (β1, . . . , βm) ∈ Zm

+ với |β| ≤ l0 sao cho

∫
S(r)

∣∣zβg∣∣t′ σm = O

(
R2m−1

R− r

k∑
u=1

Tfu(R)

)l

, (4.2)
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đối với mọi 0 ≤ l0t
′ < l < 1 và

|h| ≤

(
k∏

u=1

∥f̃u∥

)p

|g|. (4.3)

Đặt t := ρ
q−n− p

λ
−1 > 0 và ϕ := |w1| · · · |wk| · |zβh|1/λ. Khi đó, a = tlogϕ là một hàm

đa điều hòa dưới trên Bm(1) và(
k
n(n+ 1)

2
+
l′0
λ

)
t < 1.

Do đó, ta có thể chọn một số dương p′ sao cho 0 ≤ (k
n(n+1)

2 + l′0
λ )t < p′ < 1.

Vì fu thỏa mãn điều kiện (Cρ) nên tồn tại một hàm đa điều hòa dưới liên tục

φu trên Bm(1) sao cho

eφudV ≤ ∥f̃u∥ρvm.

Ta thấy rằng φ = φ1+ · · ·+φk + a là một hàm đa điều hòa dưới trên Bm(1). Mặt

khác, ta có

eφdV = eφ1+···+φk+tlogϕdV ≤ etlogϕ
k∏

u=1

∥f̃u∥ρvm = |ϕ|t
k∏

u=1

∥f̃u∥ρvm

= |zβg|t/λ
k∏

u=1

(|wu|t · ∥f̃u∥ρ+pt/λ)vm = |zβg|t/λ
k∏

u=1

(|wu|t · ∥f̃u∥(q−n−1)t)vm.

Đặt x =
l′0/λ

kn(n+1)/2+l′0/λ
, y =

n(n+1)/2
kn(n+1)/2+l′0/λ

, ta có x+ ky = 1. Do đó, bằng cách tích

phân trên Bm(1) cả hai vế của bất đẳng thức trên và áp dụng bất đẳng thức

Hölder, ta có∫
Bm(1)

eudV ≤
∫
Bm(1)

k∏
u=1

(|wu|t · ∥f̃u∥(q−n−1)t)|zβg|t/λvm

≤
(∫

Bm(1)

|zβg|t/(λx)vm
)x

×
k∏

u=1

(∫
Bm(1)

(|wu|t/y · ∥f̃u∥(q−n−1)t/y)vm

)y

≤
(
2m

∫ 1

0

r2m−1

(∫
S(r)

|zβg|t/(λx)σm
)
dr

)x

×
k∏

u=1

(
2m

∫ 1

0

r2m−1

(∫
S(r)

(
|wu| · ∥f̃u∥(q−n−1)

)t/y
σm

)
dr

)y

.

(4.4)
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Ta xét hai trường hợp sau.

Trường hợp 2.a: Ta giả sử rằng

lim
r→1

sup

∑k
u=1 Tfu(r)

log1/(1− r)
<∞.

Ta thấy
l0t

λx
≤
l′0t

λx
=
(
k
n(n+ 1)

2
+
l′0
λ

)
t < p′ và

n(n+ 1)

2

t

y
=
(
k
n(n+ 1)

2
+
l′0
λ

)
t < p′.

Theo mệnh đề [8, Proposition 6.1] và (4.2), tồn tại một hằng số dương K sao

cho, với mọi 0 < r0 < r < r′ < 1, ta có∫
S(r)

(
|wu| · ∥f̃u∥(q−n−1)

)t/y
σm ≤ K

(
r′2m−1

r′ − r
Tfu(r′)

)p′

(1 ≤ u ≤ k)

và

∫
S(r)

|zβg|t/(λx)σm ≤ K

(
r′2m−1

r′ − r

k∑
u=1

Tfu(r′)

)p′

.

Chọn r′ = r+
1− r

emax1≤u≤k Tfu(r)
, ta có Tfu(r′) ≤ 2Tfu(r), với mọi r ngoài một tập

con đo được Lebesgue E của (0, 1] với
∫
E

1
1−rdr < +∞. Do đó, bất đẳng thức

trên kéo theo∫
S(r)

(
|wu| · ∥f̃u∥(q−n−1)

)t/y
σm ≤ K ′

(1− r)p
′

(
log

1

1− r

)2p′
(1 ≤ u ≤ k)

và

∫
S(r)

|zβg|t/(λx)σm ≤ K ′

(1− r)p
′

(
log

1

1− r

)2p′
với mọi r nằm ngoài E, và với một hằng số dương K ′. Bất đẳng thức (4.4) dẫn

đến ∫
Bm(1)

eudV ≤ 2m

∫ 1

0

r2m−1 K ′

1− r

(
log

1

1− r

)2p′
dr < +∞.

Điều này mâu thuẫn với kết quả của S.T. Yau [35] và L. Karp [36].

Trường hợp 2.b: Ta giả sử rằng

lim
r→1

sup

∑k
u=1 Tfu(r)

log1/(1− r)
= ∞.

Như đã thấy ở trên, ta có

∫
S(r)

|zβg|t/(λx)σm ≤ K

(
1

1− r

k∑
u=1

Tfu(r)

)p′
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với mọi r0 < r < 1. Theo tính lồi của hàm logarit, ta có∫
S(r)

log|zβ|t/(λx)σm +

∫
S(r)

log|g|t/(λx)σm ≤ K ′′

(
log+

1

1− r
+ log+

k∑
u=1

Tfu(r)

)
.

Điều này suy ra∫
S(r)

log|g|σm = O

(
log+

1

1− r
+ log+

k∑
u=1

Tfu(r)

)
.

Theo [8, Mệnh đề 6.2] và (4.3), ta có

k∑
u=1

pTfu(r) +

∫
S(r)

log|g|σm ≥ Nh(r) + S(r) ≥ λ

k∑
u=1

q∑
i=1

N
[n]

Hu
i (f̃

u)
(r) + S(r)

≥ λ

k∑
u=1

(q − n− 1)Tfu(r) +O(log+
1

1− r
+ log+

k∑
u=1

Tfu(r)),

với mọi r ngoài một tập E ∈ (0; 1] đo được Lebesgue với
∫
E

dr
1−r < +∞. Cho

r → 1, ta có p
λ > q−n− 1. Điều này mâu thuẫn với giả thiết. Do đó, giả sử phản

chứng là sai. Vậy định lý được chứng minh.

Chứng minh định lí 4.3.1. Từ giả thiết, ta có

q > n+ 1 +
2nq

q + 2n− 2
.

Do đó q > 2n+ 2 và vì vậy,

q > n+ 1 + ρn(n+ 1) +
2nq

q + 2n− 2
+

q∑
j=1

n

lj + 1
> 2n+ 2 + ρn(n+ 1) +

q∑
j=1

n

lj + 1
.

Bằng cách sử dụng phủ phổ dụng nếu cần, không mất tính tổng quát, ta giả sử

rằng M = B(R0) ⊂ Cm.

Gọi f̃ = (f0, . . . , fn) và g̃ = (g0, . . . , gn) lần lượt là các biểu diễn rút gọn của f

và g. Bằng cách thay đổi chỉ số nếu cần, ta có thể giả sử rằng

H1(f̃)

L1(g̃)
≡ H2(f̃)

L2(g̃)
≡ · · · ≡ Hk1(f̃)

Lk1(g̃)︸ ︷︷ ︸
nhóm 1

≡ Hk1+1(f̃)

Lk1+1(g̃)
≡ · · · ≡ Hk2(f̃)

Lk2(g̃)︸ ︷︷ ︸
nhóm 2

̸≡ Hk2+1(f̃)

Lk2+1(g̃)
≡ · · · ≡ Hk3(f̃)

Lk3(g̃)︸ ︷︷ ︸
nhóm 3

̸≡ · · · ̸≡
Hks−1+1(f̃)

Lks−1+1(g̃)
≡ · · · ≡ Hks(f̃)

Lks(g̃)︸ ︷︷ ︸
nhóm s

,
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trong đó ks = q.

Với mỗi 1 ≤ i ≤ q, chúng tôi đặt

σ(i) =

i+ n nếu i+ n ≤ q,

i+ n− q nếu i+ n > q,

và Pi = Hi(f̃)Lσ(i)(g̃) − Li(g̃)Hσ(i)(f̃). Giả sử rằng số phần tử trong mỗi nhóm

nhiều nhất là n. Khi đó Hi(f̃)
Li(g̃)

và
Hσ(i)(f̃)
Lσ(i)(g̃)

thuộc về hai nhóm khác nhau với mọi

i = 1, . . . , q. Do đó, Pi ̸≡ 0 đối với mọi i ∈ {1, . . . , q}. Ta dễ dàng thấy rằng

νPi
(z) ≥

∑
j=i,σ(i)

min
{
νHj(f̃),≤lj

(z), νLj(g̃),≤lj(z)
}
+

q∑
j=1

i̸=j ̸=σ(i)

min
{
νHj(f̃),≤lj

(z), 1
}

với mọi z ngoài tập con giải tích
⋃

1≤u<v≤q(Supp νHu(f̃),≤lu
∩Supp νHv(f̃),≤lv

) có đối

chiều hai.

Bằng cách đặt P =
∏q

i=1 Pi ̸≡ 0, ta có

νP (z) ≥ 2

q∑
j=1

min
{
νHj(f̃),≤lj

(z), νLj(g̃),≤lj(z)
}
+ (q − 2)

q∑
j=1

min
{
νHj(f̃),≤lj

(z), 1
}

≥ 2

q∑
j=1

(
min{νHj(f̃),≤lj

(z), n}+min{νHj(f̃),≤lj
(z), n} − nmin{νHj(f),≤lj(z), 1}

)
+ (q − 2)

q∑
j=1

min{νHj(f̃),≤lj
(z), 1}

= 2

q∑
j=1

(
min{νHj(f̃),≤lj

(z), n}+min{νHj(f̃),≤lj
(z), n}

)
+ (q − 2n− 2)

q∑
j=1

min{νHj(f̃),≤lj
(z), 1}

≥
q∑

j=1

(
2 +

q − 2n− 2

n

)
min{νHj(f̃),≤lj

(z), n}+ 2

q∑
j=1

min{νLj(g̃),≤lj(z), n},

và tương tự

νP (z) ≥ 2

q∑
j=1

min{νLj(g),≤lj(z), n}+
q∑

j=1

(
2 +

q − 2n− 2

n

)
min{νHj(f),≤lj(z), n}

với mọi z nằm ngoài tập
⋃

1≤u<v≤q(Supp νHu(f̃),≤lu
∩ Supp νHv(f̃),≤lv

).
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Hai bất đẳng thức trên kéo theo

νP (z) ≥
q + 2n− 2

2n

q∑
j=1

(
min{νHj(f̃),≤lj

(z), n}+min{νLj(g̃),≤lj(z), n}
)

≥ q + 2n− 2

2n

q∑
j=1

min{νHj(f̃)
(z), n} −min{νHj(f̃),>lj

(z), n}

+min{νLj(g̃)(z), n} −min{νLj(g̃),>lj(z), n})

≥ q + 2n− 2

2n

q∑
j=1

(
min{νHj(f̃)

(z), n} − n

lj + 1
νHj(f̃)

(z)

+ min{νLj(g̃)(z), n} −
n

lj + 1
νLj(g̃)(z)

)
với mọi z nằm ngoài một tập con giải tích có đối chiều hai. Đặt λ =

∏q
j=1(lj +1)

và đặt h = P 2nλ
∏q

j=1(Hj(f̃) · Lj(g̃))
(q+2n−2)nλ/(lj+1). Khi đó, h là một hàm chỉnh

hình trên B(R0) và thỏa mãn

νh ≥ λ(q + 2n− 2)

q∑
j=1

(ν
[n]

(Hj(f̃))
+ ν

[n]
(Lj(g̃))

).

Dễ dàng thấy rằng

|h| ≤ |P |2nλ ·(∥f̃∥·∥g̃∥)(q+2n−2)nλ
∑q

j=1 1/(lj+1) ≤ (∥f̃∥·∥g̃∥)2nλq+(q+2n−2)nλ
∑q

j=1 1/(lj+1),

tức là

h ∈ B(2nλq + (q + 2n− 2)nλ

q∑
j=1

1/(lj + 1), 0; f, g).

Theo Mệnh đề 4.3.3, ta có

q ≤ n+ 1 + ρn(n+ 1) +
2nλq + (q + 2n− 2)nλ

∑q
j=1 1/(lj + 1)

λ(q + 2n− 2)

= n+ 1 + ρn(n+ 1) +
2nq

q + 2n− 2
+

q∑
j=1

n

lj + 1
.

Đây là điều mâu thuẫn.

Vậy có một nhóm có ít nhất n+ 1 phần tử. Ta có thể giả sử rằng

H1(f̃)

L1(g̃)
≡ H2(f̃)

L2(g̃)
≡ · · · ≡ Hn+1(f̃)

Ln+1(g̃)
.
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Giả sử Hi và Li xác định bởi các dạng tuyến tính

Hi(x0, . . . , xn) =

n∑
j=0

aijxj và Li(x0, . . . , xn) =

n∑
j=0

bijxj với i = 1, . . . , q.

Ta xét ma trận

Φ =


a10 a11 · · · a1n

a20 a21 · · · a2n
...

... . . .
...

a(n+1)0 a(n+1)1 · · · a(n+1)n


−1

·


b10 b11 · · · b1n

b20 b21 · · · b2n
...

... . . .
...

b(n+1)0 b(n+1)1 · · · b(n+1)n

 .

Đặt 
h0

h1
...

hn

 = Φ


g0

g1
...

gn

 .

Khi đó, h̃ = (h0, h1, . . . , hn) là một biểu diễn rút gọn của một ánh xạ phân

hình h từ B(R0) vào Pn(C). Rõ ràng rằng Hi(h0, . . . , hn) = Li(g0, . . . , gn) với mọi

i = 1, . . . , n+ 1.

Điều này suy ra

H1(f̃)

H1(h̃)
≡ H2(f̃)

H2(h̃)
≡ · · · ≡ Hn+1(f̃)

Hn+1(h̃)
,

và do đó f ≡ h.

Với i ∈ 1, . . . , q, ta đặt (a′i0, . . . , a
′
in) = (bi0, . . . , bin)Φ

−1 và định nghĩa H ′
i là siêu

phẳng được xác định bởi dạng tuyến tính

H ′
i(x0, . . . , xn) = a′i0x0 + · · ·+ a′inxn.

Ta thấy rằng H ′
i(f̃) = H ′

i(h̃) = Li(g̃) với i = 1, . . . , q, và H ′
i = Hi với mọi i =

1, . . . , n + 1. Giả sử rằng tồn tại i0 > n + 1 với H ′
i0

̸= Hi0. Khi đó, với mỗi

z ∈
⋃q

j=1(Supp νHj(f̃),≤li
) \ (I(f) ∪ I(g)), tồn tại một chỉ số j ∈ {1, . . . , n + 1} sao

cho Hj(f̃)(z) = Hj(h̃)(z) ̸= 0 và
H ′

i0
(h̃)(z)

Hj(h̃)(z)
=

Hi0(f̃)(z)

Hj(f̃)(z)
. Điều này dẫn đến H ′

i0
(f̃)(z) =

H ′
i0
(h̃)(z) = Hi0(f)(z). Xét hàm phân hình không đồng nhất bằng không

F (z) = H ′
i0(f̃)(z)−Hi0(f̃)(z) ̸≡ 0.
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Ta thấy rằng

νF ≥
q∑

j=1

ν
[1]

Hj(f̃),≤li
≥

q∑
j=1

ν
[1]

Hj(f̃)
−

q∑
j=1

ν
[1]

Hj(f̃),>li

≥
q∑

j=1

1

n
ν
[n]

Hj(f̃)
−

q∑
j=1

1

li + 1
νHj(f̃)

.

Khi đó, hàm F λ
∏q

j=1(Hj(f̃))
λ/(lj+1) thuộc tập hợp B(λ(1 +

∑q
j=1)

1
lj+1 , 0; f) và

thỏa mãn

νF ≥ λ

n

q∑
j=1

ν
[n]

Hj(f̃)
.

Theo Mệnh đề 4.3.3, ta có

q ≤ n+ 1 +
n(n+ 1)

2
ρ+

nλ(1 +
∑q

j=1 1/(lj + 1))

λ

= 2n+ 1 +
n(n+ 1)

2
ρ+

q∑
j=1

n

lj + 1
.

Điều này dẫn đến mâu thuẫn. Do đó, không tồn tại chỉ số i0 như vậy, tức là

H ′
i = Hi với mọi i = 1, . . . , q.

Ta ký hiệu bởi L phép biến đổi xạ ảnh từ Pn(C) vào chính nó, biến mỗi điểm

x = (x0 : · · · : xn) thành điểm x′ = (x′0 : · · · : x′n) được cho bởi
x′0

x′1
...

x′n

 = Φ


x0

x1
...

xn

 .

Khi đó, ta có L(g) ≡ h ≡ f .

Hơn nữa, nếu x là một điểm trên siêu phẳng Li, tức là

bi0x0 + bi1x1 + · · ·+ binxn = 0,

thì

n∑
j=0

aijx
′
j = (ai0, ai1, . . . , ain)Φ


x0

x1
...

xn

 = (bi0, bi1, . . . , bin)Φ
−1Φ


x0

x1
...

xn

 = 0.
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Do đó, phép ánh xạ L biến điểm x trên Li thành một điểm trên siêu phẳng Hi.

Do đó, L(Li) = Hi với mọi i = 1, . . . , q. Định lý được chứng minh hoàn tất.
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KẾT LUẬN VÀ KIẾN NGHỊ

Kết luận

Luận án nghiên cứu các bài toán trong lý thuyết phân bố giá trị cho ánh xạ

phân hình từ đa tạp Kähler đầy vào đa tạp xạ ảnh, với giả thiết rằng đa tạp

Kähler có phủ phổ dụng song chỉnh hình với một hình cầu trong Cm. Các kết

quả chính đạt được trong luận án bao gồm:

� Một định lý về quan hệ số khuyết không lấy tích phân cho ánh xạ phân

hình từ đa tạp Kähler vào không gian xạ ảnh giao với họ siêu phẳng ở vị

trí dưới tổng quát.

� Một định lý về quan hệ số khuyết không lấy tích phân cho ánh xạ phân

hình từ đa tạp Kähler vào đa tạp xạ ảnh giao với họ siêu mặt tùy ý. Trong

đó bội chặn và chặn trên của tổng số khuyết không phụ thuộc vào số siêu

mặt tham gia.

� Một định lý duy nhất cho các ánh xạ phân hình từ đa tạp Kähler vào

không gian xạ ảnh có chung ảnh ngược với họ siêu phẳng ở vị trí dưới tổng

quát.

� Một định lý duy nhất cho các ánh xạ phân hình không suy biến vi phân

từ đa tạp Kähler vào không gian xạ ảnh chia sẻ yếu một họ siêu phẳng ở

vị trí tổng quát.

� Một định lý về sự phụ thuộc đại số cho các ánh xạ phân hình không suy

biến vi phân từ đa tạp Kähler vào không gian xạ ảnh có chung ảnh ngược

với một họ siêu phẳng ở vị trí tổng quát.

� Một định lý kiểu duy nhất cho các ánh xạ phân hình từ đa tạp Kähler vào

không gian xạ ảnh có chung ảnh ngược với các họ siêu phẳng khác nhau ở

vị trí tổng quát, trong đó các ảnh ngược với bội giao lớn hơn một hằng số

nhất định có thể bỏ qua.
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Kiến nghị

Trong quá trình nghiên cứu các vấn đề của luận án, chúng tôi suy nghĩ về một

số hướng nghiên cứu tiếp theo như sau:

� Trong luận án, chúng tôi đã chứng minh định lý duy nhất cho ánh xạ

phân hình từ đa tạp Kähler vào không gian xạ ảnh giao với họ siêu phẳng

mà không xét đến trường hợp siêu mặt vì nếu theo phương pháp đề ra ở

Chương hai, số siêu mặt tham gia còn rất lớn. Trong thời gian tới, chúng

tôi sẽ nghiên cứu cách làm để đưa ra những định lý duy nhất cho ánh xạ

phân hình từ đa tạp Kähler vào đa tạp xạ ảnh giao với họ siêu mặt mà số

siêu mặt tham gia nhỏ hơn. Ngoài ra, chúng tôi cũng nghiên cứu bài toán

duy nhất cho ánh xạ phân hình từ đa tạp Kähler vào đa tạp xạ ảnh giao

với họ siêu mặt khi bội chặn bởi các trọng khác nhau và ánh xạ phân hình

được xét với những điều kiện tổng quát hơn, như ánh xạ phân hình có thể

suy biến tuyến tính.

� Chúng tôi tiếp tục nghiên cứu sự phụ thuộc đại số cho họ các ánh xạ phân

hình từ đa tạp Kähler vào không gian xạ ảnh hoặc đa tạp xạ ảnh khi họ

tham gia là các siêu mặt hoặc khi họ tham gia là siêu phẳng nhưng được

xét trong những điều kiện tổng quát hơn về bội chặn và ánh xạ phân hình

có thể suy biến tuyến tính.

� Chúng tôi dự định nghiên cứu các bài toán trong lý thuyết phân bố giá trị

cho ánh xạ phân hình từ đa tạp Kähler với lớp đa tạp Kähler tổng quát

hơn so với đa tạp có phủ song chỉnh hình với một hình cầu trong Cm như

đã được xem xét trong luận án.
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